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Abstract

Who counts as “the same” in a network, and when must they act or be treated
identically? Whilst many economic settings are network games, where with whom
agents interact shapes their behaviour, this question has remained largely unanswered.
I develop a general notion of identical network incentives and use it to organise the
analysis of equilibria and interventions in network games. I introduce algebraic tools
that leverage network symmetries, which fold the network so that nodes on either side
of the fold occupy identical positions. In unique or extremal equilibria, agents with the
same network position must take the same action. These equilibria can admit tractable
comparative statics. For budget-constrained interventions, symmetries structure how
changes in incentives flow through the network, revealing a contrast as the budget
grows. With complements in the network externality, positionally identical agents are
targeted identically. With substitutes, targeting can differentiate among equivalent
agents by redistributing their original total equilibrium action amongst them.
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1 Introduction

A common idea in economics is that agents who face the same incentives will behave similarly
or receive similar policy treatment. This forms a natural benchmark for fairness and often
simplifies analysis. However, many economic environments are network games, where agents
care not only about their own actions but also about those of their neighbours. These
network interactions shape people’s voting decisions, firms’ supplier choices, and refugees’
job searches upon arriving in a new country.1 However, it is unclear who faces the “same”
incentives in network games. Not being able to systematically say when people are“the
same” in these settings leaves us without a standard benchmark for fairness and control over
incentive heterogeneity. This is despite many network models exhibiting multiple equilibria
and a large literature recommending centrality-based targeting that favours particular nodes.

I begin with a simple organising idea: agents in the same network position face the same
network incentives.2 From this basis, I ask two related questions. First, when can we expect
agents who occupy the same network position to behave in the same way in equilibrium,
and thus describe equilibrium structure in general settings? Second, when a planner can
target agents in the network, when should agents within a given position be treated the
same, and when is it optimal to differentiate among them? For example, when intervening
to improve take-up of a more robust crop or an insurance initiative, should we expect people
appear to be important, such as village leaders or family doctors, to have a similar impact
on information transfer, and if so, is it efficient to give them the same treatment?

In non-networked settings, agents either have explicitly different parameters in their
utility functions or differing functional forms. But in network games, agents’ incentives vary
with the network’s structure, and the space of distinct network configurations is typically
large. To think systematically about when two agents occupy the same network position, I
utilise a mathematical tool called a network symmetry.3 In a star network, for example, all
peripheral nodes are equivalent in terms of their network position: each links only to the
central hub, which has many neighbours (see Figure 1).

Network symmetries create a framework which organises incentive heterogeneity in net-
work games. Using this framework, I determine sufficient conditions for when players in
identical network positions exhibit identical equilibrium behaviour and when these equilib-
ria admit tractable comparative statics. My approach also reveals that identical incentives
do not always imply identical treatment in targeting interventions. Strategic complements
require equal treatment, whilst substitutes can necessitate differentiated treatment.

The existing network-games literature analyses agents’ outcomes in a very different way

1Bond et al. [2012] shows in an enormous Facebook RCT that an “I Voted” message from close friends
increased political self-expression, information seeking, and real-world turnout. Chaney [2014] uses data on
French firms and finds they expand through contact networks. Beaman [2012] finds that larger co-ethnic
networks improve political refugees’ employment outcomes via information/referrals.

2Agents have some individual incentive to take an action (you buy a t-shirt in your favourite colour) as
well as a network incentive to take an action (you buy a t-shirt because your friends own clothes from the
same brand). To ensure that the only source of variation in network incentives is the network structure, it
is common to assume that network incentives feature in agents’ utility functions with the same parameter.

3These are called graph automorphisms in mathematics texts.
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Figure 1: In the star network (left) nodes {2, 3, 4, 5} occupy the same network position. In
the core-periphery network (right) {2, 3} share a position, as do {4, 5}.

from my symmetries-based approach. A large body of work studies linear–quadratic games
and uses centrality measures to solve for equilibria and design welfare-improving interventions
(Ballester et al. [2006], Candogan et al. [2012], Bramoullé et al. [2014]; see Jackson and Zenou
[2015] for a survey). These approaches rank agents by various centralities and are useful for
identifying “key players”. However, these results are often defined recursively and therefore
hard to interpret analytically, and the link between centrality and equality of incentives is
opaque. Moreover, centrality-based methods generally rely on strategic complements and
linear best responses. A complementary literature establishes the existence and sometimes
uniqueness of equilibrium in more general settings (Allouch [2015], Parise and Ozdaglar
[2019], Parise and Ozdaglar [2023], Zenou and Zhou [2024]). These results hold under weak
assumptions but typically stop short of describing the geometry of equilibrium actions across
agents and thus do not provide a benchmark for when “network equals” must behave alike.

Relatedly, there is a broad literature on contagion, diffusion, and targeting in networks
(Kempe et al. [2003], Banerjee et al. [2013], Galeotti et al. [2020], Akbarpour et al. [2025]).
Because optimal interventions are typically expressed in terms of centrality indices, it remains
opaque when agents who face the same network incentives should receive the same treatment
and when they may be treated differently. Whilst one recent work, Allouch and Bhattacharya
[2025], uses a notion related to positional equivalence to define a new centrality measure for
targeting in a linear, strategic complements setting, existing work has not leveraged the role
that symmetries play in creating patterns of equal and differentiated treatment amongst
agents with the same network incentives.

My symmetries-based framework complements these approaches by formalising the notion
of positional equivalence. This allows us to use powerful but previously underutilised results
from algebraic graph theory to analyse the structure of the centrality measures typically used
in network games, thereby enhancing the interpretability of these centrality-based results.
Moreover, we can use symmetries to understand equilibrium structure in general settings
where explicit expressions for equilibrium behaviour do not exist. I demonstrate the strength
of my approach in two applications.

My first application builds on the long-standing idea that symmetry simplifies economic
analysis. Classic studies focus on symmetric equilibria, where relabelling players does not
affect payoffs (Nash [1951], Dasgupta and Maskin [1986], Harsanyi and Selten [1988], Milgrom
and Roberts [1994]; see Plan [2023] for a recent extension). In conventional symmetric games,
agents have the same feasible actions and receive the same payoffs when facing the same
action profiles. Network games, by design, do not meet these conditions because agents’
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positions differ, leading to different incentives. I therefore use a relaxed version of the
symmetric equilibrium, where agents in the same network position choose the same action.
This is only generally possible in games where agents in identical positions have the same
non-network incentives. Beyond this, I remain general and do not restrict agents’ utility
functions.

I leverage symmetries to classify equilibrium structures and derive comparative statics
in settings where the existing literature struggles to find traction. Firstly, I determine when
identical network incentives imply identical equilibrium outcomes. I find that this occurs
when the equilibrium is unique or when it is the extremal equilibrium of a game of strategic
complements. This allows us to derive equilibrium structures in settings where information is
scarce, since all we have is an existence result. Unlike arbitrary equilibria in network games,
these position-invariant equilibria admit symmetry-based comparative statics. I identify
sufficient limitations on link structure that permit comparative statics in settings such as
non-linear best responses with strategic substitutes. My network symmetries framework also
suggests a new type of comparative static that simplifies analysis through explicitly control-
ling heterogeneity: compare networks with the same number of distinct network positions,
rather than the same number of nodes.

My second application uses network symmetries to classify optimal targeting in networks.
I study an incentive design problem in which a planner adjusts agents’ equilibrium actions
by altering their non-network returns, subject to a budget constraint. Unlike the previous
application, I allow agents in the same network position to have different non-network incen-
tives. I focus on the widely used quadratic network game, which has been used in settings
such as price competition, peer effects in education, and technology adoption.4

The solution to this incentive design problem at first appears complicated, as it involves
solving a high-dimensional system of interdependent first-order conditions. However, Gale-
otti et al. [2020] shows that it can be cleanly formulated in terms of the eigenvalues and
eigenvectors of the matrix representing the network’s links (the adjacency matrix ). They
find that in high-budget settings, the optimal intervention converges to a single eigenspace.
When the game exhibits complements, it converges to the eigenspace associated with the
largest eigenvalue, whilst substitutes converge to the eigenspace associated with the smallest
eigenvalue.

My symmetries framework builds on Galeotti et al. [2020]’s results. I demonstrate that
the planner may not always want to treat agents in the same network position the same way.
This is despite these agents having identical network incentives and thus an identical impact
on others’ actions in the network. I find that when there are complements, the planner will
always want to treat agents with the same network position identically, but this is not true
for substitutes. Here, the planner chooses an intervention that reallocates equilibrium action
between agents in the same network position, whilst keeping their total equilibrium action
fixed.

I also expose a paradox, even when the planner’s budget is not large: more symmetry

4Price competition: Candogan et al. [2012], Fainmesser and Galeotti [2016]. Peer effects: Calvó-Armengol
et al. [2009]. Technology adoption: Banerjee et al. [2013]
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implies that identical-looking agents are treated less equally. Specifically, networks with more
agents occupying the same network position (and thus less heterogeneity in their network
incentives) have optimal interventions in which a larger portion of the budget is spent on
redistributing total action between agents, relative to those with smaller groups of position-
equivalent agents.

These conclusions are possible because we can use a deep mathematical relationship that
exists between the eigenvectors and eigenvalues of a network and its symmetries.5 The
symmetries partition the eigenvectors associated with the adjacency matrix based on how
they act on agents in the same network position. One set is constant, and the other sums to
zero. This is useful because the total intervention can be expressed as a weighted sum of the
adjacency matrix’s eigenvectors (as shown in Galeotti et al. [2020]). This partition yields a
clean economic interpretation. The eigenvectors that are constant on each set of position-
equivalent agents contribute to the total intervention by shifting these agents’ actions up or
down by the same linear amount. Thus, these eigenvectors roughly capture pure spending
interventions. Conversely, the eigenvectors that sum to zero contribute to the intervention
by simply shifting the total equilibrium action around between agents in the same position.6

My symmetry-based characterisation of the entire eigenspace provides a set of methods
applicable to the many works that use eigenspaces in a network setting, thereby extend-
ing beyond Galeotti et al. [2020]. For example, Liu and Tsyvinski [2024] examines shock
propagation in US production networks, and Banerjee et al. [2013] ranks nodes’ information-
spreading capacity using a measure akin to eigenvector centrality.7 To the best of my knowl-
edge, I am the first to use this result in the economics network literature.

My work formalises the role of network symmetries and links them to mathematical group
theory. Whilst formal treatments of network symmetries are limited in the existing networks
literature, two notable exceptions are recent works that apply them to games with linear-
quadratic utilities and strategic complements. Allouch and Bhattacharya [2025] introduces
a “key class” partition, related to the partition of agents by network position, to identify a
group of nodes that a planner should remove to reduce aggregate activity. Chaudhuri et al.
[2024] analyse games with incomplete network information, showing that players with iso-
morphic local neighbourhoods and beliefs choose identical actions. My targeting application
generalises these by characterising the entire eigenspace. I also contribute to work on how
equilibrium actions align with eigenvectors, notably Bonacich and eigenvector centralities,
which emerge from linear manipulations of the adjacency matrix (Ballester et al. [2006],
Bramoullé et al. [2014]).

The paper proceeds as follows. Section 2 introduces the mathematical formalities of net-
work symmetries and orbits. Section 3 characterises position-invariant equilibria of network
games and their comparative statics. Section 4 applies symmetries to targeting problems
and shows how they structure optimal interventions. Section 5 concludes.

5Specifically, an implication of Maschke’s theorem.
6We note that Galeotti et al. [2024] focuses on using spectral methods to speak to a balanced budget

intervention. Their approach involves a per-unit tax balanced at the equilibrium level of activities, whereas
my observation suggests balancing via a costly action that alters marginal returns.

7See Golub [2025] for an overview of how eigenvalues are used in microeconomics.
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2 Symmetry Groups of Networks

Algebraic graph theory studies the relationship between various algebraic objects and network
properties. It has three main branches: linear algebra, group theory, and graph invariants.8

The first is widely used in network economics. We focus on the second: a rich mathematical
literature that leverages groups to learn more about network structure. Groups are one of
the standard mathematical tools for dealing with symmetries of various kinds.9 We introduce
some key mathematical definitions below. The precise definition of a group is not important
for this work, however, we include it in the appendix.

Throughout this text, we consider unweighted and undirected networks. A network Γ
consists of a pair (V (Γ), E(Γ)). V (Γ) is the set of vertices (or nodes) which we will denote
N = 1, . . . , n, and E(Γ) is the set of edges (links) which are unordered pairs {i, j} with in i, j
in N . We may represent Γ by a symmetric binary matrix, with a one in entry ij if there is
an edge between i and j and zero otherwise. Because we often think about the network and
its adjacency matrix interchangeably, we abuse notation and also call the adjacency matrix
Γ.

A permutation, Π, on a finite set S is a bijection from S onto itself. For our purposes S
will be the set of nodes of Γ, which we denote as V (Γ) when it is not clear from context.

Definition 1 (Network Symmetry). A symmetry of an undirected network Γ is a permuta-
tion Π : V (Γ) → V (Γ) such that {i, j} is an edge in Γ if and only if {Π(i),Π(j)} is an edge
in Γ. The set of all symmetries is called the symmetry group of Γ, which we shall denote by
G.

Figure 2 demonstrates an example of a network symmetry.
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Figure 2: A network symmetry where the permutation Π maps 4 7→ 5, 5 7→ 6, 6 7→ 4, and
leaves all other nodes fixed.

It turns out that we can use the symmetry group of Γ to partition V (Γ) into disjoint sets
of symmetrically equivalent nodes, as described in the remark below.

Definition 2 (Symmetric Equivalence). We say i ∼ j if there exists a symmetry Π such
that Π(i) = j.

This defines an equivalence relation on the nodes of Γ. To see this, notice that for
reflexivity, the identity operation is a network symmetry, and so every node is similar to

8These invariants typically pertain to polynomials e.g. the chromatic polynomial, which counts colourings.
9Our section on targeting in fact relies on a surprising connection between linear algebra and group theory.
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Figure 3: The orbits of the symmetry group partition the nodes into geometrically equivalent
sets.

itself. For symmetry, notice that since permutations are bijections, the inverse mapping Π−1

exists and also preserves adjacency; that is, if an edge exists between Π(h) and Π(k), then
applying Π−1 shows that the corresponding edge exists between h and k.10. Transitivity
follows from the fact that the composition of two symmetries is again a symmetry.11 Every
equivalence relation partitions the set on which it acts into disjoint sets called equivalence
classes. These will be important for our analysis going forward:

Definition 3 (Orbits). Let {σ1, . . . , σr} be the equivalence classes induced on V (Γ) by ∼.
We call {σ1, . . . , σr} the orbits of V (Γ) under G.

Figure 3 shows our running example partitioned into orbits.
Informally, if two nodes are in the same orbit then Γ ‘looks the same’ to all these nodes,

in the sense that at every distance from them their neighbourhoods are identical: there is
a direct mapping between their neighbours and their neighbours’ neighbours, etc. Orbits
are useful because they collect together geometrically equivalent nodes, and many network
games are solved using geometric properties of the nodes (for example, path centrality). We
may, in a sense, use any agent in an orbit as a representative of all of its peers.

Now, if i and j are in the same orbit, and we define i’s neighbours in a particular orbit to
be Nk

i = Ni∩σk, then |Nk
i | = |Nk

j |. This is because if h ∈ σk∩Ni then Π(h) ∈ N(Π(i)) = Nj,
and clearly Π(h) ∈ σk if h ∈ σk. Thus we can use these orbits to reduce Γ to a completely
asymmetric version of itself, called the quotient graph and denoted Γ/G, with adjacency
matrix (Γ/G)mk = Nmk. The quotient graph is weighted (by the positive integers) and
directed. Figure 4 demonstrates an example of it below.

The quotient graph is useful for several reasons, including that its spectrum gives us
useful information about the spectrum of Γ, which we shall explore further in Section 4.

10Explicitly: {h, k} ∈ E(Γ) ⇐⇒ {Π(h),Π(k)} = {h′, k′} ∈ E(Γ) then the condition {h′, k′} ∈ E(Γ) ⇐⇒
{Π−(h′),Π−(k′)} = {h, k} is automatically satisfied for all edges

11These properties all actually hinge on the fact that G is a group.

7



σ1 σ2 σ3

2

1

3

1

Figure 4: The quotient graph of our running example, where each node now represents an
orbit.

3 Equilibrium Structure and Comparative Statics

We study a widely-used class of network games where players’ payoffs depend entirely on
their own actions and those of their neighbours. In these games, players in the same network
position (i.e. orbit) have identical strategic incentives. These are sometimes called symmetric
network games. The section below analyses these games. We examine when nodes in the same
position take the same action in equilibrium. We call these orbit-invariant equilibria and
identify sufficient conditions for their existence. Orbit-invariant equilibria enable tractable
comparative statics, and we demonstrate their applications.

3.1 Model: Symmetric Network Games

We consider a set of agents N = {1, . . . , n}, and let Γ(n) denote the set of unweighted and
undirected networks on n nodes. Let X be a common strategy set available to all agents,
so that the full strategy space is Xn. Each agent i ∈ N selects an action xi ∈ X, and
together these form a strategy profile x = (x1, . . . , xn) ∈ Xn. Agent i’s payoff depends on
the strategy profile and the underlying network structure, and is given by the utility function
ui : X

n×Γ(n) → R. For convenience, we shall often pick out i’s strategy and denote strategy
profiles by the tuple (xi, x−i), where x−i = (xj)j ̸=i.

Let Ni(Γ) denote the set of neighbours of agent i in the network Γ ∈ Γ(n). We impose
two natural restrictions on the utility functions to ensure that only agents’ network position
determines their incentives and payoffs:

Assumption 1 (Unordered dependence on neighbours). An agent’s payoff depends only
on their own action and the multiset of the actions taken by their immediate neighbours.
Formally, for any strategy profiles x,x′ ∈ Xn, and a fixed network Γ, we have

ui(xi, x−i; Γ) = ui(x
′
i, x

′
−i; Γ)

whenever xi = x′
i and {xj}j∈Ni(Γ) = {x′

j}j∈Ni
.12

Assumption 1 implies that agents are agnostic as to which neighbour takes which action.
Instead, only the collection of actions matters. This assumption is satisfied in many network
games. It is for example satisfied in the many models where payoffs depend on the sum of
neighbours’ actions.

12Here {xj}j∈Ni(Γ) denotes the multiset of neighbours actions, so that repeated elements are allowed.
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Assumption 2 (Agent Anonymity). If two agents i, j have the same number of neighbours,
take an identical action, and their neighbours take the same multiset of actions, then i and
j receive the same payoff. That is,

ui(xi, x−i; Γ) = uj(x
′
j, x

′
−j; Γ)

whenever xi = x′
j, |Ni(Γ)| = |Nj(Γ)| and i and j’s neighbours actions take the same set of

actions: {xk}k∈Ni
= {x′

k}k∈Nj
.

Assumption 2 states that only an agent’s network position determines their payoffs, and
thus strategic incentives are fully dictated by network position. It means, for instance, that
two agents in the same orbit must have the same parameters in their utility functions.13

Assumption 2 is widely used in the networks literature when authors want the network to
be the only source of heterogeneity for agents, although it is often relaxed for applied works.
We drop Assumption 2 in our model in Section 4.

Strategic symmetries. A network symmetry is essentially a relabelling of the network
which leaves neighbours unchanged. However, economists have long had a notion of a strate-
gic symmetries in general (non-network) games: a relabelling of the agents in the game which
leaves payoffs unchanged. We call these symmetries strategic symmetries, to differentiate
them from network symmetries. To formalise the notion of a strategic symmetry, we begin
with a classical definition due to von Neumann and Morgenstern.

Definition 4 (von Neumann and Morgenstern (1953)). A game (N,Xn,u) is said to be
symmetric with respect to a permutation Π : N → N if Xi = XΠ(i) for all i ∈ N , and the
permutation preserves the payoff structure:

uΠ(i)(x1, . . . , xn) = ui(xΠ(1), . . . , xΠ(n)).

It is important to distinguish this from the stronger notion of a totally symmetric game.14

In a totally symmetric game, every permutation of players is a symmetry of the game. In
other words, total symmetry requires that any set of players can be swapped and the game
remains unchanged. By contrast, a game with symmetry (but not total symmetry) may
admit only a subgroup of permutations as symmetries.

Many games familiar to economists exhibit total symmetry. For example, in the standard
Cournot and Bertrand oligopoly models, permuting any set of firms yields leaves the game
unchanged. However, network games are generally not totally symmetric by design: the fact
that agents are heterogenous in who they interact with is what makes the role of the network
salient.

13For example, in the standard quadratic linear utility function ui(xi, x−i) = xi(bi + β
∑

j∈Ni
xj)− cix

2
i ,

agents in the same orbit must have the same value for bi ∈ R and ci ∈ R+. β typically lies in [−1, 1], and is
usually assumed to be the same for all agents in network games.

14Plan [2023] formalises this distinction and provides a thorough discussion of its implications.
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3.2 Orbit-Invariant Equilibria: Existence and Comparative Stat-
ics

We now define a natural network game analogue to the totally-symmetric equilibrium. Whilst
in totally symmetric equilibria, all agents take the same action, we now focus on equilibria
where all agents in the same network position take the same action. We call these equilibria
orbit-invariant equilibria:

Definition 5 (Orbit-Invariance). Let Γ be a graph on n nodes with orbits σ1, . . . , σr under
its symmetry group G. We say that a tuple (x1, . . . , xn) is orbit-invariant if i, j ∈ σk implies
that xi = xj.

Thus, for an action profile to be orbit-invariant all nodes in the same orbit must take the
same action. In some ways, these profiles reflect a natural form of behavioural consistency:
players in the same network position behave identically. In the section below, we study
when such orbit-invariant equilibria arise. We then study whether they inherit some of the
tractable comparative statics of their totally-symmetric counterparts, and also suggest a new
type orbit-based comparative statics.

3.2.1 Games with Orbit-Invariant Equilibria

Here, we explore the relationship between the symmetry structure of the network and the
strategic symmetries of its associated games. We know from the definitions section above
that if two agents occupy nodes which are in the same orbit under the symmetry group of
the network, then they occupy the same structural positions in the network. Intuitively, if
two agents are structurally indistinguishable and their utility functions depend only on their
own and their neighbours’ actions, then they must be strategically interchangeable. This
leads to the following observation:

Lemma 1. Every symmetry of the network Γ is a symmetry of the game (N,Xn,u(x,Γ)).15

The proof of the above is fairly intuitive. Suppose that Π is a network symmetry and
x is a particular strategy profile. If we apply Π to x and afterwards node j plays node
i’s strategy, then all of j’s neighbours are now playing the strategy originally played by i’s
neighbours, and so by Assumption 2, j now gets i’s payoff. A formal proof of this intuition
can be found in the appendix.

This result is an important starting point for our analysis because it links the combina-
torial structure of the network and the equilibrium behaviour it supports. Symmetries of
games are important because they can often tell us about the structure of a wide class of
equilibria for which explicit solutions are difficult to find.

Proposition 1 (Orbit-invariant equilibria in pure strategies). Suppose that i and j are in
the same orbit of Γ under G. Then:

15For those familiar with group theory: G is a subgroup of G
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• If the game (N,Xn,u(x,Γ)) has a unique equilibrium x∗, then x∗
i = x∗

j ; and

• If the game (N,Xn,u(x,Γ)) is strictly supermodular with maximal equilibrium x∗ and
minimal equilibrium x∗, then x∗

i = x∗
j , and x∗

i = x∗
j .

The following also immediately follows from Lemma 1 once we apply the following clas-
sic result due to Nash [1951], which states that any finite game has a symmetry-invariant
equilibrium in mixed strategies.16

Corollary 1. Suppose X is finite. Then the game (N,Xn,u(x,Γ)) always has an equilibrium
in mixed strategies wherein all nodes in the same orbit of Γ play the same strategy.

These results are helpful in the many settings where we cannot solve for equilibria ex-
plicitly, but know they satisfy certain properties. They are especially relevant for existing
equilibrium uniqueness results for general network games.17 However, relating these unique
equilibria to the network’s structural properties is usually difficult in these very general
settings. Similarly, many network games of interest, such as diffusion models, are strictly su-
permodular but lack explicit equilibrium solutions. Proposition 1 complements these results
by adding a structural descriptor (orbit-invariance).

Our results are also useful because symmetries can simplify the computation of equilibria.
This is important as network games often involve high-dimensional solutions. Restricting the
equilibrium search to orbit-invariant strategy profiles can reduce computational complexity.

The role of symmetries in describing equilibria is robust to changes in agents’ payoff func-
tions and strategy spaces. This contrasts with network centrality measures, which provide
fine-grained predictions about equilibrium behaviour but each new economic setting requires
a new centrality measure. For example, Bonacich centrality determines which agents take
a higher equilibrium action in the quadratic linear utility model (Ballester et al. [2006]).
But identifying which agents are more influential in diffusing ideas and innovations relies on
eigenvector centrality (Golub and Jackson [2010], Banerjee et al. [2013]).18 Network sym-
metries provide a different descriptive lens. They apply widely and identify agents who take
the same action in equilibrium. However, they cannot describe how agents’ actions differ
across orbits.

Network centrality measures are also usually defined recursively in terms of the network’s
adjacency matrix. These rarely make the structure of ties and rankings transparent. Thus,
a priori comparisons across different structural positions typically require computing the
index. Symmetries, on the other hand, are easily identifiable by inspection and immediately
imply orbit-constancy.

Our focus on orbit-invariant equilibria can also be considered compatible with centrality-
based analysis. A notable contribution that generalises centrality measures is Sadler [2022].

16A game is said to be finite if it has a fixed number of players and a finite action space.
17See, for example: Zenou and Zhou [2024].
18Bonacich centrality ranks agents by counting the number of walks emanating from them. Eigenvector

centrality instead ranks nodes by their entries in the eigenvector associated with the largest eigenvalue of
the network’s adjacency matrix.
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This work introduces ordinal centrality, a general measure that ranks agents based on an iter-
ative comparison of their neighbourhood sizes. Ordinal centrality ranks equilibrium actions
in general network games of strategic complements. A key assumption of ordinal centrality
is that it is orbit-invariant. Sadler [2022] shows that several important centrality measures
are in fact ordinal centralities - and thus orbit-invariant.

Our ability to map symmetries into matrices also gives us an easy, algebraic way to prove
that the symmetries of Γ are also the symmetries of Bonacich centrality, when all nodes have
the same utility function:

Remark 1. Let Bonacich centrality of an undirected network Γ be defined by cB = b(I −
βΓ)−1Γ1, where β and b ∈ R, and 1 is the length n vector of ones. Then, if i, j are in the
same orbit of the symmetry group of Γ, cBi = cBj .

The proof may be found in the appendix, but relies on a standard fact that ΠΓ = ΓΠ.
We have so far shown that every symmetry of the network must be a strategic symmetry

of the game. We now derive a sufficient condition for when every strategic symmetry of the
game must be a strategic symmetry of the network.

Proposition 2. Suppose that u is additively separable in the following sense: ∃ ν : X → R,
µ : X2 → R and injection f : R → R such that

u(xi, x−i,Γ) = f
(
ν(xi) +

∑
Γijµ(xi, xj)

)
.

Moreover, assume that ∃(x̃, x0) ∈ X2 such that µ (x̃, x0) = 0 and ∃x1 ∈ X such that
µ (x̃, x1) ̸= 0.

Then Π is a symmetry of the game ⇐⇒ it is a symmetry of Γ.

The requirements on the existence of (x̃, x0) and (x̃, x1) may at first appear quite restric-
tive. However, because this is a sufficient condition, it may be that the actual requirements
are somewhat weaker. The reason for these precise constraints is that we need to construct
an action profile where only a given node’s neighbours take an action which give a non-zero
payoff. Moreover, many network games do satisfy this additively separable property: for ex-
ample threshold games and congestion games. This converse result—that every symmetry of
the game is also a symmetry of the network— implies that all strategic equivalences among
players arise solely from the network topology, rather than from exogenous invariances in
the payoff structure.

3.2.2 Comparative Statics for Orbit-Invariant Equilibria

The section above shows that orbit-invariant equilibria occur in a variety of settings. We now
analyse their comparative statics. Motivated by studying settings with strategic substitutes
or non-linear best responses, we examine when orbit-invariant equilibria inherit the tractable
comparative statics of totally symmetric games. We then propose a new kind of orbit-based
comparative static.
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Robust comparative statics on parameters on one–factor networks. Milgrom and
Roberts [1994] derive conditions under which totally-symmetric games admit symmetric
equilibria that inherit the same monotone comparative statics on parameters as the game’s
best response function.19 This result is useful as it studies a very general setting: it requires
only mild continuity, and makes no assumptions on the sign or curvature of the best response
function’s derivative. We wish to extend this useful result to orbit-invariant equilibria.

As in Milgrom and Roberts [1994], we consider the parameter-space of the game to be
a partially ordered set, Θ. We also make their key assumption which forces agents’ best
responses to cross the axis at least once.

Assumption 3 (MR94). Let f(x, θ) : [0, 1]×Θ → [0, 1], where Θ is a partially ordered set.
We say f satisfies MR94 if:

• f(0, θ) ≥ 0 and f(1, θ) ≤ 0, and for each θ, and

• f(·, θ) is continuous but for upward jumps: if for all y, lim supx→y− f(x, θ) ≤ f(y, θ) ≤
lim infx→y+ f(x, θ).

The crux of Milgrom and Roberts [1994]’s proof for totally symmetric games is to write
equilibrium conditions as a fixed-point equation in a single scalar. In other words, if ϕ(x, θ)
is the best response function, set f(x, θ) = ϕ(x, θ)− x, and find the roots of f(x, θ). In one
dimension a parameter shift moves the graph of the scalar map in a single direction, yielding
monotone changes in its fixed points. However, the arbitrary heterogeneity of network games
typically prevents us from doing this - instead we have to solve for a system of fixed points.
In many dimensions the parameter does not induce a total order in Rn, so fixed points can
change non-monotonically. To collapse the role of the network in the best response function
to a single scalar, we restrict our attention to networks whose orbits display a particular
kind of structure. We call such networks one-factor networks :

Definition 6 (One-factor networks). We say that a network Γ is a one-factor network if the
adjacency matrix of its quotient network, Γ/G, has rank one.

One-factor networks are a family of networks that include stochastic block models whose
matrix of edge probabilities is rank one, hierarchical networks consisting of layers where each
layer is a regular network, and vertex-transitive networks. In a one-factor network, each orbit
connects to every other orbit in the same ratio. For example, if half of one orbit’s links are
with orbit r, then half of any other orbit’s must also be with orbit r. This is particularly
helpful if the network game is additive in the following sense:

Definition 7. Suppose X ⊆ R. We say a network game is additive if each player i’s best
response function can be written as ϕi(

∑
Γijxj; θ), where xi = ϕi : R×Θ → R.

Our extension to orbit-invariant equilibria relies on the idea that we can solve for them
on the quotient graph. We solve one best response function per orbit. Instead of taking

19Theorem 1 of Milgrom and Roberts [1994].
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∑
Γijxj as an input, it now takes

∑
(Γ/G)rsx̃s, where x̃ ∈ [0, 1]R is the vector representing

each orbit’s action. Recall that an m × n matrix M has rank one if there exist b, w ∈ Rm

such that M = bw⊤. Thus, for nodes in orbit σr we have that∑
s

(Γ/G)rs x̃s =
∑
s

(
bw⊤)

rs
x̃s = br

∑
s

wsx̃s,

and so the role of the network in best responses collapses to a single sufficient statistic. We
may then apply Milgrom and Roberts [1994] to obtain the following result:

Proposition 3 (Comparative statics for one-factor networks). Let Γ be a one-factor net-
work. Consider an additive network game with strategy space X = [0, 1]. If each ϕi(·; θ)
satisfies Assumption 3, then there exist a lowest and a highest orbit-invariant equilibrium,
xi(θ) and xi(θ). Moreover, if each ϕi(·; θ) is nondecreasing in θ, then the extremal equilibria
are nondecreasing in θ.

The above result yields comparative statics for a variety of strategic settings but a limited
class of networks. It differs from results that apply to more general network structures but
rely on specific settings - usually involving games of strategic complements or linear best
responses. The above also demonstrates how we can use symmetries to discipline network
heterogeneity without completely disposing of it. The quotient matrix makes it immediately
obvious what restrictions on network structure will collapse the multi-dimensional best-
response equation into a one-dimensional one.

A limitation of the above result is that it applies only to one-factor networks. These net-
works may occur in economic scenarios where the connection from any group i to j can be
written multiplicatively. For example, certain stochastic-block models, or in markets where
all bilateral exposures are intermediated by one common pool (e.g., unsecured overnight
lending). It also nests symmetric benchmarks such as vertex-transitive graphs. Some net-
works may also be nearly separable across orbits, so that the quotient matrix is close to rank
one. In this case, the scalar fixed point and its comparative statics can be used approximate
the full game’s. We may thus take the exact rank-one case as a tractable benchmark.

Whilst this result guarantees the existence of pure-strategy orbit-invariant equilibria on
one-factor networks, does not establish that these are the only equilibria.20 This is similar
to Galeotti et al. [2010], an influential work which studies sub-classes of equilibria where all
agents of the same degree take the same action. Moreover, whilst other non-orbit-invariant
equilibria may exist, they need not possess the same favourable comparative statics.

We apply our results to an example: a best shot public goods game with non-linear best
responses and convex costs. Best shot public goods games are classic example of a game of
strategic substitutes, and have been widely studied in the network games literature.21 The

20Indeed, determining for which regions of the parameter space orbit-invariant equilibria are the only
equilibria is an important line of future work for this project. It appears that the equilibria of certain
network games are typically orbit-invariant over some part of the parameter space, and then undergo a
pitchfork bifurcation into an orbit-invariant and a non-orbit-invariant branch.

21Notable examples include Bramoullé and Kranton [2007], Bramoullé et al. [2014], and Galeotti et al.
[2010].

14



literature has largely focused on cases with linear best responses. All calculations for the
example below can be found in the appendix. These comparative statics cannot generally
be obtained for equilibria which are not orbit-invariant, nor for networks which are not
one-factor.

Example 1 (Public goods games with non-linear best responses). We consider a public
goods setting on a network where agent i enjoys the public good if either they or one of their
neighbours provides it. The outcome of each node’s public good provision is stochastic. Agent
i chooses effort level xi ≥ 0 and produces the public good with probability

Pr[Public good = 1](xi) = 1− e−xi ,

producing effort xi has a quadratic cost equal to c
2
x2
i , where c > 0. Agent’s total utility is

therefore

u(xi; x−i) = V ·
(
1− e−(xi+

∑
Γijxj)

)
− c

2
x2
i .

The best response function is therefore

ϕi(xi; x−i) = W0

(
V

c
· e−

∑
Γijxj

)
,

where W0(·) is the principal branch of the Lambert W function. This is the inverse of
the equation f(y) = yey for y ≥ 0. It is a non-linear function that satisfies W ′

0(y) > 0, so
that ∂ϕi/∂xj < 0 for any j ∈ Ni (since e−

∑
Γijxj is decreasing in xj).

Best responses are therefore non-linear strategic substitutes. W0 is continuous and bounded
from above by ln[(2V

c
+1)/(1+ ln(V

c
+1))], so we may apply Proposition 3 to one-factor net-

works to obtain the following intuitive comparative equilibrium characterisations:

• There always exists an orbit-invariant equilibrium, and there is a highest and lowest
orbit-invariant equilibrium action.

• Increasing V/c increases efforts on each orbit.

• Adding links to Γ decreases equilibrium actions.

Orbit-based comparative statics on network structure. The previous section dealt
with finding comparative statics on the parameters of the network game. We now shift our
focus to comparative statics on structural changes to the network (whilst holding parameters
fixed). Changes to the network structure involve adding or removing new links or nodes.
We propose a novel method for comparative statics on structural changes to the network:
compare networks with a fixed number of orbits, instead of a fixed number of nodes. Any
changes to the network must not change the number of orbits of its symmetry group. This
approach allows us to change the network in a way that keeps the number of distinct network
positions (and thus the number of strategically distinct agents) the same. We call such
changes orbit-preserving changes :

15



Definition 8 (Orbit-Preserving Change). For a network Γ(E, V ), we say that the addition of
vertices V ′ and edges E ′ ⊆ (V ′∪V )×(V ′∪V ) to form Γ′(V ∪V ′, E∪E ′) is an orbit-preserving
change if Γ and Γ′ have the same number of orbits.

We illustrate some orbit-preserving changes to the network in Figure 2 in Figure 5.
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Figure 5: Orbit preserving edge additions (first row) and node additions (second row) to the
network depicted in Figure 3.

Orbit-preserving changes contrast with the standard approach of the current literature,
which fixes the network size and attempts comparative statics on arbitrary edge changes.
However, this approach is often inconclusive, even in games of strategic complements, where
results regarding supermodular games apply and we may often rank agents’ equilibrium
actions using centrality measures. This is because the lattice of networks,22 does not admit
strict comparisons between networks with the same number of edges, nor different numbers
of nodes.

A limitation of this approach is that edge and node additions must preserve orbit struc-
ture. This restriction is not unreasonable if a symmetric network-formation process is as-
sumed. Moreover, the analysis applies in settings where the equilibrium is orbit-invariant
—for example, when it is unique or when payoffs exhibit strategic complements. While
supermodular-games methods provide some comparative-statics results (since networks form
a lattice), our approach remains useful in cases those methods do not directly address, such
as comparisons across networks with different numbers of nodes or with the same numbers
of nodes and edges but different structures.

We illustrate the advantage of this approach with an example of Hotelling price com-
petition on a network. One-orbit (i.e., vertex-transitive) networks behave like the standard
circular Salop model with quadratic costs; indeed, the Salop model is a special case. Below,
we show that, even for two-orbit networks, we can find interesting comparative statics on
orbit-preserving edge and node additions.

22The lattice formed on the set of networks with n nodes ordered by number of edges.
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Example 2 (Two Orbit Hotelling). We consider firms indexed by i embedded on a network
Γ = (E, V ). Each undirected edge connecting two firms represents a mass of 1 consumers
who are uniformly distributed on the interval [0, 1/E]. Firm i chooses a price pi which they
will charge in all markets (i.e. they cannot choose market-specific prices). Costs are identical
for each firm and quadratic: c(q) = kq2/2, where k > 0.23

Firms i and j compete for market share on edge {i, j} in the standard Hotelling manner.
A consumer located at position x on edge i, j has utility u = v − pi − tx if they purchase
from firm i, where t > 0 is the constant transport cost faced by consumers and v > 0 is
the valuation of consumption. Thus, on each edge incident to it, firm i faces linear demand
1
2t
(pj − pi + t/|E|) and so total demand for firm is given by

qi(p) =
∑

Γij

(
pj − pi + t/|E|

2t

)
,

where p ∈ (R+)n is the vector prices charged by firms.
For convex costs, there exists a unique equilibrium price p. Because the equilibrium is

unique, by Proposition 1, we have that the equilibrium price vector must be constant on
each orbit of Γ so for any orbit σ p∗i = p∗j ∀ i, j ∈ σ. So we may employ our toolkit of
orbit-based comparative statics to yield some novel insights. In particular, we focus on the
two-orbit setting, which is essentially equivalent to a two-player game on a weighted and
directed network. We may therefore reduce our problem an implicit two-equation system
which can be easily differentiated to yield the following:

• Adding nodes increases competition: if we add nodes in a way that preserves the two
orbit structures then

∂p∗i
∂|σi| and

∂p∗i
∂|σj | are both < 0.24

• Cross orbit densification increases competitive pressure more than intra-orbit densi-
fication: suppose we add links to the network in a way that preserves the two orbit
structures: then | ∂p

∗
i

∂qij
| > | ∂p

∗
i

∂qii
| and | ∂p

∗
i

∂qij
| > | ∂p

∗
i

∂qjj
|.

Although we can solve for equilibrium prices using linear algebra, this explicit solution
it does not readily yield comparative statics on edge and node additions. The equilibrium-
price equation is opaque and highly dependent on the specific network structure—because
it involves inverting the adjacency matrix—so the resulting comparative statics are corre-
spondingly network specific. We can also compare two networks of the same size but differing
structures, which is usually difficult to achieve with standard methods. This is because these
approaches rely on the set of networks on n nodes forming a lattice, but not all networks are
strictly ordered.

23Here we deviate from the standard Hotelling model wherein costs are usually linear. However, strictly
convex costs couple firms production decisions across markets and thus allow network effects to bite. The
insights of this model go through for any convex cost functions.

24This assumes that the quotient graph remains unchanged- only orbit sizes increase.
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4 Network Targeting Interventions

Understanding the optimal policy for welfare-maximising interventions in network games
is very important. A key area of interest in economic network theory is leveraging the
network’s structure to maximise the impact of welfare improving interventions. We build on
a recent and influential work, Galeotti et al. [2020], which shows that the optimal intervention
for the standard quadratic-linear utility model is pinned down by the network’s spectrum
(i.e. the eigenvalues and associated eigenspaces of the adjacency matrix). We show that
the symmetries of the network determine the structure of this spectrum, using a surprising
group theoretic result.

4.1 Model

We consider a set of agents indexed N = {1, . . . , n} embedded on an unweighted, undirected
and connected network Γ.25 As a reminder, we re-use notation and also refer to the adjacency
matrix of the network as Γ, with entries Γij. The adjacency matrix Γ is a symmetric matrix
because the network is undirected.

Each agent i simultaneously chooses an action ai ∈ R to maximise their utility function
Ui:

Ui (a,Γ) = ai

(
bi + β

∑
j∈N

Γijaj

)
− 1

2
a2i . (1)

Here bi ∈ R is i’s independent marginal return to their action which does not depend on
the action of others. We let b ∈ Rn denote the vector of each agent’s independent marginal
returns. Conversely, β ∈ R governs returns to the actions of others. Note that if β > 0, the
game exhibits strategic complements, and if β < 0, it exhibits strategic substitutes.

The Nash equilibrium profile of the game a∗ ∈ Rn satisfies:

a∗ = [I− βΓ]−1 b,

where the inverse in the above is well defined as long as we make the assumption that the
largest eigenvalue of Γ is less than 1/|β|.

The utilitarian social welfare at equilibrium is defined as the sum of the equilibrium
utilities:

W (b,Γ) =
∑
i∈N

Ui (a
∗,Γ) =

∑
i∈N

1

2
(a∗i )

2 =
1

2
(a∗)T a∗, (2)

where the second equality is also a standard result.
Our social planner’s problem closely follows that of Galeotti et al. [2020],26 which char-

acterises the optimal intervention of a planner who acts by changing the status quo vector

25The unweightedness assumption can be relaxed, if we extend our definition of a symmetry to include
weighted graphs, but makes our exposition clearer.

26We have omitted Galeotti et al. [2020]’s non-strategic, non-network spillovers.
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of marginal returns b̂ to a vector b, subject to a budget constraint C on the cost of their
actions.

The intervention occurs before agents simultaneously choose their actions. The planner’s
targeting problem is given by:

max
b

W (b,Γ) (3)

s.t. a∗ = [I− βΓ]−1 b and
∑
i∈N

(
bi − b̂i

)2
≤ C. (4)

An important distinction between our work and Galeotti et al. [2020] is that we restrict
our attention to unweighted networks (i.e. the entries of the adjacency matrix Γ are either
0 or 1) whilst Galeotti et al. [2020] allows for arbitrary weights in R+. However, we would
not expect an arbitrary network weighted in R+ to exhibit non-trivial symmetries, as it is
unlikely that any two links would have the exactly same weight.27 Whilst our results in this
section would hold for positive weighted networks if we extended Definition 1 to require that
a symmetry preserves adjacency and edge-weights,28 we restrict our attention to unweighted
networks where symmetries are most salient. These occur in important economic scenarios
such as friendship and collaboration networks, where datasets are usually binary, as well as
product relatedness networks.

4.2 Symmetry Structures in Targeting Interventions

4.2.1 Galeotti et al. [2020]: key results and their implications

Whilst the social planner’s problem in Equation (3) may at first seem complicated to solve,
Galeotti et al. [2020]’s seminal work demonstrates how the eigenvalues and eigenvectors of
the matrix Γ cleanly characterises the planner’s intervention. Their characterisation supplies
a transparent spectral formulation of the planner’s targeting problem in network games. It
has therefore had a wide-reaching economic impact because it yields implementable guidance
by solving a typically messy problem very cleanly.

Before we present Galeotti et al. [2020]’s results, we recall some properties related to the
spectrum of Γ. We say that a scalar λ is an eigenvalue of the n × n matrix Γ if ∃ u ∈ Rn,
u ̸= 0, such that Γu = λu. We order the eigenvalues of Γ in weakly descending order so that
λ1 ≥ λ2 ≥ . . . ≥ λn. Note that there may be some repeated values in this chain. This is
a departure from Galeotti et al. [2020], who assume that there are no repeated eigenvalues,
but their results easily extend to this setting, as we show below.

Because we assume that the network is undirected, its adjacency matrix is a real sym-
metric matrix and therefore diagonalisable. Recall that a matrix Γ is diagonalisable if there

27Indeed, important future work is to relax the notion of symmetry to extend our results to “almost
symmetric” networks, although symmetries in the underlying network formation process would result in
exact symmetric weighted networks.

28Formally we would say that if Γ is a weighted graph with weight function w : E(Γ) → R+, then Π is a
symmetry if {i, j} ∈ E ⇐⇒ {Π(i),Π(j)} ∈ E and w({i, j}) = w({Π(i),Π(j)}).
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exists an orthogonal matrix U consisting of eigenvectors of Γ such that UΛUT = Γ, where
Λ is a diagonal real n× n matrix consisting of the eigenvalues of Γ.

We order an orthonormal basis consisting of eigenvectors u1, . . . , un of Γ according to
the magnitude of their associated eigenvalue.29 If an eigenvalue repeats then its algebraic
multiplicity equals geometric multiplicity.30

Moreover, let n−m+ 1 be the dimension of the eigenspace associated with the smallest
eigenvalue, λm, so that the eigenbasis for this space is {um, . . . , un}. Note that if m < n,
then λm = λm+1 = . . . = λn. For ease of reference we shall refer to the smallest eigenvalue
as λm.

We now turn to the statement of Galeotti et al. [2020]’s key result. Let the net change to
agents’ independent marginal returns be written as y∗ = b∗−b̂. Moreover, let αl = 1/(1−βλl)

and b̂
l
= b̂·ul, where · is the standard vector dot-product. We then have that that the optimal

intervention y∗ and resulting change in equilibrium action, ∆a∗, is given by:

Theorem ((Galeotti et al. [2020]), Theorem 1). Let the adjacency matrix Γ have eigenvalues
λ1, . . . , λn, ordered in descending order, with associated eigenvectors u1, . . . , un. Let the
status-quo vector of agents stand-alone returns be given by b̂. The optimal intervention, y∗,
and resulting change in equilibrium actions, ∆a∗, is given by:

y∗ =
n∑

l=1

(
b̂
l αl

µ− αl

)
ul =

n∑
l=1

y∗l u
l, and ∆a∗ =

n∑
l=1

(
1

1− βλl

)
y∗l u

l,

where µ is the Lagrange multiplier in the planner’s problem.

The proof the above assumes that all eigenvalues are simple. For reasons explained below,
this does not suit our purposes. We therefore show the following for robustness, the proof of
which can be found in the Appendix:

Lemma 2 (Extension to repeated eigenvalues). Suppose Γ has repeated eigenvalues. Then
Theorem 1 of Galeotti et al. [2020] continues to hold with the same expressions for y∗ and
∆a∗

The Theorem has two key takeaways. The first is that any intervention decomposes
into a sum that can be written in terms of orthogonal principal components (eigenvectors).
Because these components are orthogonal, a change in the direction of one does not cause a
change in the direction of another. Thus, each eigenvector forms an independent direction of
intervention. The change in action owing to an intervention in the direction of an eigenvector
is just a simple rescaling of the intervention itself- thus changes have a linear impact on
actions. The second takeaway for Theorem 1 in Galeotti et al. [2020] is that characterises
what portion of the optimal intervention lies in each of these components. We can see

29Note that when an eigenvalue has geometric multiplicity > 1, the choice of basis orthonormal basis is
not unique, but the eigenspace in Rn clearly is.

30If an eigenvalue has multiplicity µ so that λi = λi+ 1 = λi+µ, then the µ corresponding eigenvectors
may be ordered randomly without loss of generality.
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which principal directions ul constitute the largest portion of y∗: those with more extreme
eigenvalues (larger for complements, smaller for substitutes) and those that are more parallel
to the initial vector of marginal benefits b̂ (i.e. those having a larger dot product with it).
The proof of Theorem 1 of Galeotti et al. [2020] (and our version of it) relies on diagonalising
both equilibrium actions and welfare in the eigenbasis of Γ.

Remark 2 (Principal Directions). Each of the eigenvectors of Γ describes an independent
principal direction of y∗: they break down the intervention into independent parts, each of
which translates to a linear shift in equilibrium actions.

However, Galeotti et al. [2020] does not characterise the structure of these principal
directions, or how impact people in the same position in the network. Our contribution is
to characterise the structure of each of these principal directions, using the symmetries of
the underlying network.

Allowing for repeated eigenvalues. Galeotti et al. [2020] assume that all n eigenvalues
of Γ are unique, i.e. simple.31 However, simple eigenvalues turn out to have a surprising
implication for a network’s symmetry structures. In particular, assuming simple eigenvalues
limits the kinds of symmetry structures which we may study, owing to the following theorem:

Theorem 1. ([Biggs, 1993, Ch.15, Theorem 4]) If all the eigenvalues of a network Γ are
simple, then every symmetry Π of Γ satisfies Π2 = I.

The result above already demonstrates how symmetry groups interplay with network
properties - understanding the ramifications for a simple eigenvalue assumption would be
impossible without referring to the symmetry group. The assumption that all eigenvalues are
simple actually implies that the network must display a specific kind of symmetry: only the
set of reflections. This is limiting for two reasons: firstly, many real-world graphs do display
large and arbitrary symmetry groups. Secondly, this rules out classes of networks which are
economically relevant: for example, those which contain large cliques or demonstrate circular
symmetry. Indeed, our running example has the circular symmetry 4 7→ 5 7→ 6 7→ 4, which
does not satisfy this requirement.

Galeotti et al. [2020] study arbitrary weighted networks that will generally have no non-
trivial symmetries. However, in our case we wish to specifically study networks with arbitrary
symmetry structures and therefore cannot make the assumption of simple eigenvalues.

4.2.2 Amplifying and Redistributive Targeting Interventions

We now introduce our first key result, which shows how the symmetries of the network
partition the optimal intervention into two economically interesting components:

Theorem 2. Suppose Γ has r orbits. The principal directions of the optimal intervention
y∗ consist of:

31This forms second part of what is called Assumption 2 in Galeotti et al. [2020]. An eigenvalue is called
simple if the dimension of its associated eigenspace (the geometric multiplicity) is 1.
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• r amplifying modes which are constant on each orbit σ and linearly increase/decrease
the action taken by each agent in σ by the same quantity; and

• n−r redistributive modes which sum zero on each orbit σ and preserve the total action
by reallocating amongst nodes in the same orbit.

Moreover, the intervention corresponding to the largest eigenvector, u1, is always constant
on each orbit.

Note that when we say that ul is constant on each orbit σ we mean that ul
i = ul

j for every
i, j in σ. Conversely, if we say that ul sums to zero on each orbit, we mean that

∑
i∈σ u

l
i = 0.

Note that by the Perron-Frobenius Theorem, u1 is always simple for connected networks.
The result above shows that the symmetries of Γ play a crucial role in helping us under-

stand the structure of y∗. Whilst previous work could solve for y∗ in terms of the spectrum
of Γ, the structure of that spectrum is opaque. Viewing the network through the lens of its
symmetries removes this opacity and reveals clear patterns in the structure of the optimal
intervention. In particular, they predict when agents in the same network position will be
treated similarly and when they will be treated differently.

In loose terms, the network spectrum tells us about how a change to a set of nodes’ actions
will propagate through the network. Because symmetries pin down a lot of the structure
of the network, they also pin down the spectrum structure. The eigenvectors that are fixed
by every symmetry of the network represent directions of propagation that cannot “cancel
out” across symmetric blocks —rather, they evolve by simple scaling by their eigenvalue.
We therefore call these amplification modes. Conversely, the eigenvectors which sum to zero
represent directions of propagation which change sign or redistribute actions within each
symmetric block, and their contributions tend to partially cancel. We therefore call these
redistribution modes.

We can use the quotient graph Γ/G to determine which eigenvectors correspond to con-
stant modes: they are “lifted” eigenvectors of Γ/G.32 The word “lift” here means that if λ
is an eigenvalue of Γ/G with associated eigenvalue u, and we define ũ by ũi = uk if i ∈ σk,
then ũ is an eigenvector of Γ associated with λ.

This decomposition is helpful because it also partitions the eigenbasis of Γ into a constant
part and a zero sum part, and thus allows us to leverage the symmetries of the network to
understand the propagation of changes to agents’ actions.33 The proof of this relies on a
series of fairly deep results in the algebraic graph theory literature.34 The most notable
way that this decomposition respects the propagation structures of the network is that the
eigenspace corresponding to the largest eigenvector, which governs the direction of maximal
propagation, must always be entirely constant on orbits and hence lives in this symmetric
subspace. We show this in the proof of Proposition 4.

32This is because every eigenvalue of Γ/G is an eigenvalue of Γ.
33This special demeaning is sometimes used in fluid mechanics and is called the Reynolds Operation. Note

that whilst demeaning y∗ along any partition of the nodes is possible, only demeaning along the orbits of
the symmetry group respects the eigenbasis and thus gives us information about flows through the network.

34See Theorem 3 of Ch 9.3 of Godsil and Royle [2001].
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Figure 6 illustrates the decomposition of the change in equilibrium action on our running
example network for when β = 0.1.35 Because this network has three orbits, it has three
amplifying mode. In particular principal directions associated with the first, second and last
eigenvalues are constant on each orbit. The remaining six modes redistributive, and sum to
zero on each orbit. Although we have not marked them here, the component of y∗ in each
direction would simply be linear scalings of ∆a∗, and therefore their relative magnitudes and
signs would be the same as those of y∗.
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Mode 1 2 3 4 5 6 7 8 9
∆a1 Amp. 0.11 0.25 0.25 0.33 0.33 0.33 0.33 0.33 0.33
∆a2 Red. 0. -0.34 0.34 -0.2 -0.2 -0.2 0.2 0.2 0.2
∆a3 Amp. -0.03 0. 0. 0.06 0.06 0.06 0.06 0.06 0.06
∆a4 Red. 0. 0. 0. 0. 0. 0. -0.1 0. 0.1
∆a5 Red. 0. 0. 0. 0. 0. 0. -0.06 0.12 -0.06
∆a6 Red. 0. 0. 0. -0.1 0. 0.1 0. 0. 0.
∆a7 Red. 0. 0. 0. -0.06 0.12 -0.06 0. 0. 0.
∆a8 Red. 0. 0.09 -0.09 -0.05 -0.05 -0.05 0.05 0.05 0.05
∆a9 Amp. 0.02 -0.04 -0.04 0.06 0.06 0.06 0.06 0.06 0.06

Figure 6: Decomposition of the change in total equilibrium action on our running example
network. Notice that there are 3 orbits and thus 3 amplifying modes, 6 redistributive modes.
∆al indicates the portion of ∆a in the direction of ul

In some ways, comparing changes in equilibrium action and welfare between nodes in
the same orbit is the most natural way to measure inequality whilst keeping network effects
fixed. This is because the network’s connection structures “looks the same” to nodes in
the same orbit, and so the strategic incentives of these nodes (at least in terms of network
effects) is the same. This is opposed to nodes in differing orbits, where differences in actions
and welfare may simply be due to their occupying very different positions in the network
structure.

More symmetric networks with a smaller number of orbits will, paradoxically, by the
first point of results of Theorem 2 have fewer eigenvectors in their spectrum which are
constant on each orbit. Thus, generally, the social planner’s intervention will generally act
to redistribute action between agents within each orbit, rather than decreasing/increasing

35This network has eigenvalues {
√
5,

√
3, 0, 0, 0, 0, 0, -

√
3, −

√
5}.
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it uniformly across each orbit. Conversely, networks with a larger number of orbits will see
interventions which decrease variation within orbits.

The impact of the symmetry structure of a network on total change in equilibrium action
is demonstrated in Figure 7 below, where we compare the changes in actions on two very
similar networks. Both have the same number of nodes and links, and also the same set
of eigenvalues. However, the first network is more symmetric (it has only two orbits and
thus two amplification modes) and therefore has more zero-sum eigenvectors in its spectrum
(it has six). Conversely, the second network is less symmetric (it has four orbits) and
therefore has more constant eigenvectors in its spectrum (it has four). This difference in
symmetry structures has a substantial impact on how the optimal intervention acts to amplify
or dampen changes to total equilibrium action.36 In the first network, a larger portion
of the eigenvectors sum to zero on each orbit, and so a larger portion of the planner’s
budget is allocated to redistributive interventions. In the second network, more eigenvectors
are constant on each orbit, and so a larger portion of the planner’s budget is allocated
towards amplifying interventions. There are also welfare implications: paradoxically, there
will generally be more inequality between symmetrically equivalent agents in graphs which
are more symmetric that in those which are less symmetric.

Each of the constant and redistribution modes also has an interesting economic meaning
as there is interesting interplay between the symmetry of Γ and the types of interventions
favoured by the social planner. Firstly, observe that the sum of the redistribution modes
represents a balanced budget change to b̂ as its entries sum to zero across each orbit (and so
in total), and so the resulting total change in equilibrium actions also sums to zero. Thus,
this portion of the intervention could be implemented by appropriate taxes and subsidies.
Conversely, the constant modes do not generically sum to zero and so represent a “pure
spending” intervention. Indeed, as Γ becomes increasingly symmetric, in the sense that the
number of orbits of G on Γ decreases, the constant modes agree on increasingly many agents
and certainly cannot be funded through a balanced budget intervention.

Finally, we note that if Γ has at least one non-trivial symmetry then Γ/G must have
dimension < n, and so there must be at least one eigenvector which is not lifted from the
quotient graph (and zero can never be an eigenvector). This insight leads to the following
remark:

Remark 3. If a node i has no symmetric partners (ie. the orbit containing i consists of
only i), then i receives zero intervention under all redistribution modes.

So in our running example from the definitions section above, we know that y01 = 0, and
also y02 = −y03. Moreover, this can be seen for the central node in the λ2 and λ3 interventions
in Figure 6.

36The optimal intervention in this example is calculated with identical initial b values for both networks,
and the magnitude of the projection of the initial b onto each eigenspace is identical for each space. β = 0.08
and C = 1.5.
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(a) More symmetric network: 2 constant modes
and 6 redistributive modes.
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25
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(b) Less symmetric network: 4 constant modes
and 4 redistributive modes.

(c) Comparison of changes in total equilibrium actions under as budgets grow.
Notice that the more symmetric network (orange lines) has consistently lower
changes in total equilibrium action than the less symmetric one (orange lines)

Figure 7: Comparison of identical interventions in two networks with 9 nodes, 18 links and
identical eigenvalues but differing symmetry structures. Nodes in the same orbit are the
same colour.
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4.2.3 Large Budget Interventions

Theorem 2 is especially useful in characterising y∗ for games of strategic complements (i.e.
β > 0) in large budget settings. In particular, we find that the social planner incentivises
every agent in the same orbit to take increasingly similar equilibrium actions.

To perform this analysis, we extend a proposition from Galeotti et al. [2020] which shows
that under large budgets y∗ converges to a single eigenspace, to graphs which have arbitrary
symmetry groups and thus may have eigenspaces of dimension greater than 1. The statement
of the extension and its proof can be found in Section A.3.

Proposition 4. Let β > 0. Suppose that i, j are in the same orbit of the symmetry group
of the graph. Then as C → ∞,

y∗i
y∗j

→ 1 and
a∗i
a∗j

→ 1.

In other words, agents in the same orbit of the graph receive increasingly similar inter-
ventions as the budget grows, which leads to them having increasingly similar actions in
equilibrium. Note that two agents who are symmetric in their network position may not
be symmetric with respect to the game: their marginal returns to their own action, the b̂i
coefficients, may be different. The strongest version of this result would be on a vertex-
transitive graph, where every agent would receive an identical intervention, regardless of
their b̂i co-efficients.

The proof of this result combines the characterisation of Theorem 2 with our extension
of a result in Galeotti et al. [2020], which shows that under large budgets, the social plan-
ner allocates their entire budget to the eigenspaces of the largest or smallest eigenvalues,
depending on whether the game exhibits substitutes or complements. Similar to the section
above, we extend the result of Galeotti et al. [2020] beyond the simple eigenvalue setting to
networks with arbitrary symmetry structures. Our extension can be viewed in the Appendix.

The implications of this proposition are somewhat surprising as it states that, in the
presence of increasingly large budgets, the social planner will ignore any differences in b̂
and instead focus purely on agents’ network position in the underlying graphs. This makes
somewhat intuitive sense in that the direction of the largest eigenvector maximises flow
through the network. However, that the symmetries of the graph are the symmetries of the
largest eigenvector may be considered somewhat surprising. This follows from two results in
the algebraic graph theory literature.

Firstly, any eigenvector u associated with a simple eigenvalue of Γ must have a particular
structure on entries for each orbit of G on Γ: all entries in the same orbit must have the
same modulus. This is because if Π ∈ G, then if u is a valid eigenvector for λ then so is
Πu.37. If λ is simple then Πu must be linearly dependent on u, and since λ is real the result
follows. If the entries differ in sign then u is a redistributive mode and the entries of each
orbit must sum to zero. Thus, the size of the orbit must be even: half its nodes must have
positive entry in u and the other half must be negative. So for any two entries i, j in u which
are in the same orbit must have the same modulus, but possibly opposite signs. Secondly,
the Perron-Frobenius Theorem states that in a strongly connected graph, λ1 is simple, and
all entries for any eigenvector associated with it must have the same sign.

37Notice ΓΠu = ΠΓu = λΠu
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Things, unfortunately, become more complicated when we consider games of strategic
substitutes. This is because the smallest eigenvalue is not necessarily simple, as the Perron-
Frobenius theorem only characterises the largest eigenvalue of Γ. Thus, the result which
states that all entries in the associated eigenvectors must have the same modulus on each
orbit no longer applies, nor can we use it to conclude that all entries must have the same sign.
However, we can make a complete classification of large budget interventions for two types
of networks whose spectrum is very structured: fully vertex-transitive graphs and bipartite
graphs.

If we assume that the network is completely symmetric (so that all nodes lie in the same
orbit), we may nail down the spectrum of the graph more precisely. We call such graphs
vertex-transitive graphs. As the result below shows in such graphs, the “opposite” behaviour
as described in Proposition 4 seems to occur in that the entirety of the intervention now lies
in the redistributive mode of intervention:

Proposition 5. Let β < 0. Suppose that Γ is a vertex-transitive graph. Then as C → ∞,∑
i y

∗
i → 0 and

∑
i a

∗
i → 0.

In a sense, the optimal intervention is now maximally asymmetric, in that the nodes in
each orbit receive zero net interventions. This is a strong contrast with Proposition 4, where
the intervention is maximally symmetric (every agent receives an identical intervention).
When the network is completely symmetric, then when β > 0, the social planner wants to
give all agents an increasingly identical intervention, which cannot be implemented with a
balanced budget. However, when β < 0, the social planner wants to give agents increasingly
dissimilar interventions (in the sense that agents in the same orbit may receive interventions
of opposite sign), which can be implemented with a balanced budget intervention.

Notice that Proposition 5 combined with Proposition 4 also suggests some interplay
between the symmetry of optimal interventions and whether the game has strategic comple-
ments or substitutes. The optimal intervention may shift between a constant intervention
mode and a redistributive mode, depending on whether the game has strategic complements
or substitutes. This suggests that if we allowed for subsidies and taxes on b̂, the social planner
could always perform better in games of strategic substitutes than strategic complements,
as they may implement the solutions to these in a balanced-budget fashion.

The reason this result holds for vertex-transitive graphs is that only the eigenvector
associated with the largest eigenvalue, u1, is constant on every node in the graph (as the
quotient graph Γ/G consists of a single node, and the largest eigenvalue must always be an
eigenvalue of the quotient graph). The remaining eigenvectors must always sum to zero on
each orbit, and so, in particular, any eigenvectors associated with the smallest eigenvalue,
λm.

This dramatic difference between complements and substitutes is illustrated for the cycle
network on 6 nodes (clearly a vertex-transitive network) in Figure 8. The left-hand panel
plots the six entries for y∗ (normalised by

√
C) for when the game has strategic complements

(β = 0.25) as a function of increasing budget. Here, as per Proposition 4, the intervention
for each agent converges to the same value (roughly 0.4). The equal and opposite divergence
for the low-budget entries is caused by the fact that, as discussed above, all eigenspaces but
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(a) For β > 0: y∗i converges to a single value.
(b) For β < 0: sum (dashed line) of y∗i converges
to 0.

Figure 8: Comparisons of individual y∗i on a vertex-transitive 6-node network demonstrating
convergence to a single value, and a zero-sum for β < 0.

the one associated with the largest eigenvalue are redistribution modes, which still feature in
lower-budget interventions. Conversely, the right-hand panel plots the six normalised entries
for y∗, as well as their sum, for when the game has strategic substitutes (β = −0.25). Here,
half the nodes converge to the same positive value (roughly 0.4) and the other half converge
to the negative of that value (roughly -0.4), so that the sum over all nodes converges to zero
(as marked by the dashed line). Hence, the change from complements to substitutes leads
to dramatically different behaviour.

It may be tempting to conclude that the modes of intervention associated with the
smallest eigenspace always sum to zero over each orbit. However, this is not the case. The
result below, however, shows that the symmetry structures of the network play an important
role in determining whether y∗ is a constant mode or a redistribution mode for large budgets
when the game has strategic substitutes (β < 0). We are able to make this characterisation
for bipartite graphs: networks whose nodes can be partitioned into two disjoint sets, such
that no two nodes that are neighbours in the network are in the same set. For connected
networks, this partition is unique.

Proposition 6. Suppose that Γ is a bipartite network with independent sets R and S. Then
if β < 0, limC→∞

∑
i∈σ y

∗
i = 0 on every orbit σ ⇐⇒ ∃Π such that Π(r) = s for some r ∈ R

and s ∈ S. If such a Π exists, it is a bijection from R to S.

This result implies that the social planner should implement redistributive interventions
only when there exist two agents in the same orbit (i.e., for whom the network “looks the
same”) but located in distinct connected components. A bipartite network often represents
an economic environment with two types of agents who never interact with agents of the
same type: for example, suppliers and buyers. In this case, the result states that it is optimal
for the planner to employ a redistributive intervention when the two types are copies of each
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other in terms of their network incentives. In other words, for every agent of one type, there
exists an agent of the other type who occupies an identical position in the network. Note
that, because Π is a bijection, the two bipartite sets must be of the same size. Indeed, it
follows that Γ/G cannot be bipartite.38

For games of strategic substitutes on networks, it is intuitively clear that it is efficient
for agents to take different actions from their neighbours (for example, if agent i takes a
high action, then their neighbours should take a low action). This is most easily achieved
in a bipartite graph, where we may separate the agents into two sets that have no direct
links, and thus no direct strategic interactions, with one another. Hence, it is efficient for
all nodes in the same bipartite set to take a similar action, as there are no direct spillovers
between them. Thus, if two nodes are in different bipartite sets but in the same orbit, the
planner wants to increase the differences between them - and hence favours redistributive
interventions. This is illustrated in Figure 9 for two bipartite graphs both with 8 vertices
and 8 edges, when β = −0.25.39 For the first panel, the network is the cycle on eight nodes
and is therefore vertex-transitive, so all nodes are in the same orbit. Here, the individual
y∗i values (normalised by

√
C) are plotted as solid lines. It is clear that half of the nodes

converge to about 0.38, the others to -0.38, and so the total converges to zero. For the second
panel, none of the four orbits contains nodes from two different bipartite sets. Thus, the
individual values of y∗i converge to different values on each orbit: 0.5 for σ1, 0.1 for σ2, -0.3
for σ3, and -0.4 for σ4.

Although this result currently only applies to bipartite networks, it, combined with
Proposition 5, gives us some insight as to what a classification for a wider class of net-
works might look like. Suppose that the network is partitioned into sets of agents who are
not neighbours, and these sets have maximal size.40Then the social planner should prefer
to give redistributive interventions in large budget scenarios: when there are two agents in
independent components of the graph but in the same orbit.

It turns out that the requirements for the smallest eigenvector of a bipartite network to
sum to zero on each orbit pin down what kind of symmetries the network can exhibit.

Corollary 2. If Γ is bipartite and limC→∞
∑

i∈σ y
∗
i = 0 on every orbit σ then |σ| must be

even for every orbit σ, and G must contain an element Π such that Π2 = 1.

Proof. Firstly, because un has no zero entries, it must be that if
∑

i∈σ u
n = 0 for every

orbit σ, there must be no singleton orbits - which means no node is fixed by every Π ∈ G.
Moreover, it must be that |σ| is even for every orbit, as all entries of un must have the same
(non-zero) magnitude on each orbit and must sum to zero. Thus, by the Orbit-Stabiliser
Theorem, we must have that 2 divides |G|, and so by Cauchy’s Theorem, there must be an
element of G of order 2.

38Although the definition of bipartite graphs for weighted graphs is slightly more involved.
39b̂ was once again chosen so that each of its projections onto the individual eigenspaces has the same

magnitude.
40These are known as maximal independent sets.
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σ1 = {1, 2, 3, 4, 5, 6, 7, 8}

(a) Bipartite network with both bipartite sets in the same orbit: total y∗i converges to zero.
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σ1 = {3, 5} σ2 = {4, 6}
σ3 = {1, 7} σ4 = {2, 8}

(b) Bipartite network with no orbit containing nodes from different bipartite sets: y∗i converges to
a constant value on each orbit, and does not sum to zero (dotted line).

Figure 9: A comparison of the optimal intervention for strategic substitutes for two bipartite
graphs: one’s symmetry structure forces a redistributive mode intervention, the other forces
a constant mode intervention.
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The interpretation of this result is that we can essentially pair up all the nodes in one
bipartite set with nodes in the other bipartite set. Economically, this means a planner who
targets the smallest eigenvector —often the cost-minimising, budget-balanced direction for
taxes, subsidies or shocks—can implement it with offsetting transfers inside every class of
identical agents and apply the same rule on both sides of the market.

As a final remark, we note that even if we assume that the smallest eigenvalue is simple,
we cannot immediately determine whether the optimal result lies in yc or y0 (as the sign of
all entries need not be the same), but can categorise the convergence of the relative moduli
of the components of the optimal intervention:

Remark 4. Let β < 0. Moreover, suppose the smallest eigenvalue of Γ, λn, is simple. If i

and j are in the same orbit of the symmetry group of the graph. Then as C → ∞,
|y∗i |
|y∗j |

→ 1.

The proof follows the same logic as the proof of Proposition 4, except that we may no
longer apply the Perron-Frobenius Theorem to assert that all the entries in un must have
the same sign. Moreover, note that this does not contradict Proposition 5: it would just
require that the number of entries of un in each orbit would be even and form pairs of equal
magnitude and opposite sign.

5 Conclusion

This paper illustrates the benefits of a network symmetry–based analysis of network games.
Its theme is that network symmetries provide a useful lens on equilibrium structure and
optimal interventions by grouping together agents who occupy the same position in the
network and therefore face the same network incentives. Relative to the existing literature,
the paper makes two contributions. First, it introduces the concept of the orbit-invariant
equilibrium, introduces sufficient conditions for its existence and shows it has some desirable
comparative statics properties. Secondly, it enhances the interprebility eigenvector–based
targeting results by characterising how network symmetries determine the entire structure
of optimal interventions, not just the limiting eigenspace.

I show that symmetries are a network invariant that informs equilibrium structure across a
wide variety of games. I prove that many network games admit orbit-invariant equilibria and
that, under mild orbit-regularity and neighbour-sum best responses, the highest and lowest
such equilibria exist and inherit monotone comparative statics. On one–factor networks
this extends the comparative static of Milgrom and Roberts [1994] for totally symmetric
games to a large class of network games, including examples with strategic substitutes and
non-linear best responses. This complements existing existence and uniqueness results in
network games by identifying a tractable subclass of equilibria that retain strong structural
properties even when other equilibria exist. I also propose a new type of comparative static
– the orbit-based comparative static – which compares networks with a fixed number of
network positions rather than a fixed number of nodes. I demonstrate its usefulness in a
best-shot public good example, where I obtain comparative statics in a non-linear game of
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strategic substitutes, and in a Hotelling pricing application, where cross-orbit links intensify
competition more than intra-orbit links.

I then show that symmetries play an important role in optimal targeting for a budget-
constrained utilitarian planner. Building on Galeotti et al. [2020], I first extend their char-
acterisation of the optimal intervention by dropping the simple-eigenvalue assumption and
working with the full eigenspace of the adjacency matrix. My symmetry framework then
partitions this eigenspace into amplifying modes, which are constant on orbits and shift ac-
tions uniformly within each orbit, and redistributive modes, which sum to zero on each orbit
and reallocate actions within orbits while keeping their totals fixed. This goes beyond ex-
isting eigenvector-based results by characterising when agents in the same network position
(and thus with the same incentives) will receive the same treatment, and when they will
receive differing treatment. Results are particularly clean for large budgets: interventions
become increasingly symmetric for strategic complements but can converge to zero-sum re-
distributive patterns for substitutes. I further show that the number of orbits determines the
extent to which an intervention loads on amplifying versus redistributive modes, and high-
light a paradoxical implication for substitutes: networks with larger symmetry classes, where
agents’ network incentives are more similar, can generate optimal interventions with more
redistribution within those classes. My symmetry-based characterisation of the eigenspaces
should extend to many other settings that use spectral methods in networks, as eigenvectors
govern the flow of perturbations to agents’ actions through the network.

The study of symmetry groups of networks is a rich and deep topic that is largely ignored
by economists, and this work has only touched on its implications. There are many avenues
for future work, some of which I list below.

I establish sufficient conditions for orbit-invariant equilibria, but a full classification re-
mains open. Future work could identify when only orbit-invariant equilibria exist versus
when orbits show heterogeneous actions, which may depend on network effects and the ge-
ometry of the symmetry group (e.g., reflections vs. rotations). Assessing the stability of
these equilibria is also important, especially since symmetric equilibria are often studied
empirically but may not be robust to small changes in incentives. Subgroup structure can
classify permitted symmetries; for instance, a prime-length cycle has no non-trivial symmet-
ric substructures, so equilibria are either totally symmetric or totally asymmetric.

Another application is to study optimal interventions by a cost-minimizing planner who
can adjust agents’ stand-alone returns. There are also connections between network symme-
tries and eigenvalues, suggesting further applications given the importance of eigenvalues in
network analysis.

Finally, a natural limitation of this work is that my results have the most bite in networks
with non-trivial symmetries. We can justify this as a midway point to discipline network
heterogeneity, which is not outside the spirit of economic theory. Most economic games
assume complete heterogeneity (i.e., there is no network), whereas the current network lit-
erature allows arbitrary heterogeneity by not considering symmetries at all. Symmetries
provide a stylisation that improves tractability, while remaining sufficiently close to reality,
as real-world networks do appear to display them. However, relaxing my strict symmetry
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assumptions will serve to make my arguments more robust. There are two avenues we might
take to do this. The first is to determine whether my result classifying the eigenspace almost
holds for totally asymmetric graphs that, with the addition of a few links, would achieve
non-trivial symmetries. The second would be to relax the requirement that the symmetries
are a bijection.

6 Bibliography

References

M. Akbarpour, S. Malladi, and A. Saberi. Just a few seeds more: The value of network data
for diffusion. American Economic Review, 115(11):3713–3748, 2025.

N. Allouch. On the private provision of public goods on networks. Journal of Economic
Theory, 157:527–552, 2015.

N. Allouch and J. Bhattacharya. The key class in networks. European Economic Review,
172:104950, 2025.
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A Appendix

A.1 Additional Definitions

Definition 9 (Group). A group is a set A together with a binary operation · : A × A → A
such that the following axioms are satisfied:

1. Closure: For all a, b ∈ A, a · b ∈ A.

2. Associativity: For all a, b, c ∈ A, (a · b) · c = a · (b · c).

3. Identity Element: There exists an element e ∈ A such that for all a ∈ A, e · a =
a · e = a.

4. Inverse Element: For each a ∈ A, there exists an element b ∈ A such that a · b =
b · a = e, where e is the identity element.

A.2 Symmetry Structures in Equilibrium - Proofs

A.2.1 Proof of Lemma 1

Proof. Suppose that Π is a symmetry of Γ such that Π(i) = i′. Consider a strategy profile
x ∈ Xn. Because Π is a symmetry, and there are no self-links in Γ, we have that Ni′ = {Π(j) :
j ∈ Ni}. So {xj′}j′∈Ni′

= {xΠ(j)}j∈Ni
, and clearly |N ′

i | = |Ni|. Because we have assumed
that ui(xi, x−i; Γ) = uj(x

′
j, x

′
−j; Γ) if |Ni| = |Nj| and {xk}k∈Ni

= {x′
k}k∈Nj

, we clearly have
that

ui′(x1, . . . , xn; Γ) = ui(xΠ(1), . . . , xΠ(n); Γ),

and so the condition for Π being a symmetry of the game is satisfied.
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A.2.2 Proof of Proposition 1

Proof. This follows from [Plan, 2023, Theorem 2], which states that if Π is a symmetry of a
game on a finite player set with strategy spaceXn, then if x∗ = (x∗

1, . . . , x
∗
n) is an equilibrium,

then so is (x∗
Π(1), . . . , x

∗
Π(n)). The result then immediately follows from Lemma 1.

A.2.3 Proof of Remark 1

Proof. If Π is a symmetry of Γ, then we may represent Π with an orthogonal matrix Π. We
have that Π is a symmetry of Γ iffΠΓ = ΓΠ.41. But thenΠcB = Π(I−βΓ)−1bΓ1. However,
clearly Π−11 = 1, and Π−1Γ = ΓΠ−1.42 Thus, we have that ΠcB = Π(I−βΓ)−1Π−1bΓ1 =
cB.

A.2.4 Proof of Proposition 2

Proof. The sufficient condition comes from Lemma 1. So it remains to prove the necessary
condition. Suppose that S ∈ G is a symmetry of the game (notice that S need not be a
symmetry of Γ). Let S(i) = i′ and S(j) = j′. We want to show that S is a symmetry of Γ.
It is sufficient to show that if (i, j) ∈ E(Γ) ⇐⇒ (S(i), S(j)) = (i′, j′) ∈ E(Γ). Consider the
strategy profile χ′ defined by:

χk =


x̃ if k = i′;

x1 if k ∈ Ni′ ; and

x0 otherwise.

Denote µ(x̃, x1) = µ1. Now, because S is a symmetry of the game we must have that for
any strategy x ∈ Xn, uS(i)(x1, . . . , xn; Γ) = ui(xS(1), . . . , xS(n); Γ). Thus we must have that
i′’s and i’s payoffs must satisfy:

ui′(χ
′
i′ , χ

′
−i′ ,Γ) = f

ν(x̃) +
∑
j′∈Ni′

µ1


= ui(χ

′
i′ , S(χ

′
−i′),Γ)

= f

ν(x̃) +
∑
j∈Nj

µ(x̃, χS(j))

 ,

where S(χ′
−i′) is an abuse of notation, and stands for (χS(1), . . . , χS(n))−i′ . Because f is an

injection, we must have that
∑

j′∈Ni′
µ1 =

∑
j∈Nj

µ(x̃, χS(j)). But µ(x̃, χS(j)) ̸= 0 iff ∃j′
such that S(j) = j′ and j′ ∈ Ni′ . Thus, for the equality to hold, we must have that every
neighbour j of i must be the pre-image under S of a neighbour j′ of i′, and every neighbour j′

of i′ has a pre-image in Ni. So we have shown that if (i, j) ∈ E(Γ) iff (S(i), S(j)) ∈ E(Γ).

41See [Biggs, 1993, Ch. 15, Prop. 2]
42To see this: note that because Π is orthogonal, Π−1 = ΠT . Thus Π−1Γ = (ΓΠ)T = ΓΠ−1.
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A.2.5 Proof of Proposition 3

Proof. For any symmetric equilibrium, all nodes in orbit σr must take the same action xr.
So we may rewrite the BR function ϕ at the orbit-level in terms of the quotient network
Γ/G:

Φr

(∑
[Γ/G]r,sxs; θr

)
,

where from our assumption of agent anonymity we have that θi = θj = θr ∀i, j ∈ σr. Since
Γ/G is a rank-one matrix, there exists some w ∈ Rr and β ∈ Rr such that Γ/G = βwT .
Note that Γ/G is non-negative, so w and β are too. Thus, for each orbit, we have that∑

[Γ/G]r,sxs = βr

∑
wsxs. So the role of the network in the BR of any node at some action

state x collapses to a single sufficient statistic, t :=
∑

wsxs. Substituting xs = Φs into the
expression for t gives

t =
∑

wrΦr (βrt; θr) . (5)

Since each Φr is continuous but for upward jumps, their weighted sum is also continuous in
t but for upward jumps. We may therefore apply Corollary 1 of Milgrom and Roberts [1994]
to complete the proof.

A.2.6 Calculations for Example 1

Proof. Solution for best responses The FOC for u(xi; x−i) = V ·
(
1− e−(xi+

∑
Γijxj)

)
− c

2
x2
i

with respect to xi is

V · e−(xi+
∑

Γijxj) − cxi = 0

xie
xi =

V

c
· e−(xi−

∑
Γijxj)

⇒ ϕi(xi; x−i) = W0

(
V

c
· e−

∑
Γijxj

)
.

Strategic substitutes It is a well-known property of the Lambert-W function that

dW (y)

dy
=

W (y)

y(1 +W (y))
.

Thus

∂ϕi(xi; x−i)

∂xj

= −V

C

W0

(
V
c
·
(
1− e

∑
Γijxj

))
1 +W0

(
V
c
·
(
1− e

∑
Γijxj

))Γij,

since W0 ≥ 0, we have strategic substitutes.
Upper bound on W0 If x = yey then a well-known bound on W0 is given by

W0(x) ≤ ln

(
2x+ 1

1 + ln(x+ 1)

)
,

which is increasing in x. For our purposes, x = V
c
· e−

∑
Γijxj , which is bounded above by V

c

when x = 0. Substituting this into the equation above yields the desired upper bound.
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A.2.7 Calculations for Example 2

Uniqueness of equilibrium. We show that the unique equilibrium price is given by

p∗ =
t

|E|

(
D̃−1 + I−D−1Γ

)−1

1n, (6)

where D = Diag[di] and D̃ = (k/2t)D+ I.

Proof. Each firm i solves the problem

max
pi

pi
∑
j

Γij

(
pj − pi + t/|E|

2t

)
− k

2

(∑
j

Γij

(
pj − pi + t/|E|

2t

))2

.

This yields the first-order condition(
2 +

k

2t

∑
j

Γij

)
pi +

(
1∑
j Γij

+
k

2t

)(∑
j

Γij (pj + t/|E|)

)
= 0

⇒
(
2 +

k

2t
di

)
p∗i =

(
1

di
+

k

2t

)∑
j

Γijpj +

(
1 +

kdi
2t

)
t

|E|
,

where di is the degree of node i. Writing this as a matrix system yields(
2In +

k

2t
D

)
p =

(
D−1 +

k

2t
In
)
Γp+

(
In +

k

2t
D

)
t

|E|
1n

⇒ p∗ =
t

|E|

(
D̃−1 + In −D−1Γ

)−1

1n,

where D is the diagonal matrix consisting of each nodes’ degree and D̃ = In + k
2t
D. Note

that the inverse is well defined as (D̃−1 + In − D−1Γ) is a symmetric diagonal dominant
matrix, as its ith diagonal element is given by 2 + kdi/2t, whilst the sum of its off diagonal
elements are 1 + kdi/2t, which is strictly less.

Comparative statics calculations:

Proof. Without loss of generality, we focus on comparative statics for the orbit indexed by
1. The following calculations were performed in Wolfram Mathematica.

Let dσi = qii + qij be the degree of σi in Γ/G. We have that :

p∗1 =

(
kdσ1 + 2t

) (
kdσ2

(
dσ1q21 + dσ2q12

)
+ 2t

(
dσ1dσ2 + dσ1q21 + dσ2q12

))
2
(
kdσ1dσ2(q12 + q21) + 2t

(
dσ1dσ2 + dσ1q21 + dσ2q12

)) (
dσ1 |σ1|+ dσ2|σ2|

) , (7)

which is clearly decreasing in |σ1| and |σ2|.
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Proof. Again, we focus on orbit 1 WLOG. We substitute in the feasibility constraint for
cross orbit edges |σ2| = q12|σ1|/q21 into Equation (7) to obtain:

p∗σ1 =
q21
(
kdσ1 + 2t

)
2|σ1|

(
dσ1q21 + dσ2q12

) · (
dσ1q21 + dσ2q12

)(
kdσ2 + 2t

)
+ 2t dσ1dσ2

2t
(
dσ1q21 + dσ2q12

)
+ dσ1dσ2

(
k(q12 + q21) + 2t

) ,
We then have that the difference between increasing links within orbit 1 (increasing q11)

and increasing links between orbit 1 and orbit 2 (increasing q12 - note that if q12 increases
then q21 must increase if the size of each orbit is to remain fixed.):

∂p∗σ1

∂q12
−

∂p∗σ1

∂q11
=− q21 dσ2

(
kdσ1 + 2t

)
·(

k2dσ1dσ2

(
dσ1q21 + dσ2q12

)2
+ 2kP12(q; d) t+ 4

(
dσ1dσ2 + dσ1q21 + dσ2q12

)2
t2
)

2
(
dσ1q21 + dσ2q12

)2(
k dσ1 (q12 + q21)dσ2 + 2

(
dσ1dσ2 + dσ1q21 + dσ2q12

)
t
)2

σ1

,

where we have that:

P12(q; d) = (dσ1 + dσ2)
(
d2σ1q221 + d2σ1dσ2 q21 + 2dσ1dσ2 q12q21 + d2σ2q212

)
+ 2d2σ1d2σ2 q12.

Since all terms and factors on the RHS are positive, the difference is negative. Since
∂p∗σ1

∂q12

and
∂p∗σ1

∂q11
are both negative, this implies

∣∣∣∂p∗σ1

∂q12

∣∣∣ > ∣∣∣∂p∗σ1

∂q11

∣∣∣.
A.2.8 Proof of Theorem 2

Proof. From Lemma 2, the change in equilibrium action due to the portion of y∗ in the
direction of ul is given by

[I− βΓ]−1 y∗
l
ul =

1

1− βλl

(
b̂l

αl

µ− αl

)
ul,

where we define αl = 1/(1− βλl)
2. Thus, if we can show that ul is either constant on each

orbit σ or sums to zero, then the result holds.
Indeed, this follows from a series of results in the algebraic graph theory literature, which

hinge on the fact that the orbits {σ1, . . . , σr} of the symmetry group G form an equitable
partition of Γ. A partition π of Γ with cells C1, . . . , Cr is called equitable if for any cell Ck,
we have that for each i ∈ Ck, |Ni ∩ Cl| is the same, for all l ∈ {1, . . . , r}. This property
allowed us to define the quotient graph in the definitions section. The characteristic matrix
P of π is the n× r matrix where Pik = 1 if i ∈ Ck.

For any equitable partition, we can define a weighted and directed graph, denoted Γ/π,
whose nodes are the cells of π and whose edges are the constant number of links between
each cell of π. Notice that for the partition generated by G, this is precisely the quotient
graph Γ/G defined in the section above. Let us denote its adjacency matrix by H.

The following pair of lemmas then implies the result:
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Lemma 3 (Godsil and Royle [2001], Ch.9, Lemma 3.1). Let π be an equitable partition of
the graph Γ, with characteristic matrix P , and let H be the adjacency matrix of Γ/π. Then
ΓP = PH.

Lemma 4 (Godsil and Royle [2001], Ch.9, Lemma 3.2). A partition π of Γ is equitable if
and only if the column-space of P is Γ-invariant.

Recall that the column-space of an n× r matrix P is invariant with respect to a matrix
n × n Γ if for every column vector pi of P , Γpi lies in the span of p1, . . . , pr. The proof
of Lemma 4 hinges on the fact that the column space of P is Γ-invariant iff there is a
matrix H such that ΓP = PH. But since π is an equitable partition, we may let H be
the adjacency matrix of Γ/G. Thus, if u is an eigenvector of H with eigenvalue λ then
ΓPu = PHu = λPu, and so Pu is an eigenvector of Γ with eigenvalue λ. Thus, we say that
P ‘lifts’ the eigenvectors of H in Rr to eigenvectors of Γ in Rn.

If P is Γ-invariant, then so is the matrix formed by the orthogonal complement of the
column space of P , P⊥. This implies that there also exists a matrix H ′ such that ΓP⊥ =
P⊥H ′. The same logic applies to the eigenvectors of H ′. Since the dimensions of the column
space of H and H ′ must sum to n, every eigenvector of Γ either has the form Pu, (where
v is an eigenvector of H) and is constant on the cells of P , or sums to zero on the cells of
P .

A.2.9 Proof of Proposition 4

Proof. First we show that limC→∞
y∗i
y∗j

=
u1
i

u1
j
. In order to deal with the fact that y∗ → ∞ as

C → ∞, we consider y∗ = y∗

||y|| . It is clear from Proposition 7 that as C → ∞, ρ
(
y∗, u1

)
→ 1.

This implies that limC→∞ y∗ = u1, as we have that

||y∗ − u1||2 = ||y∗||2 + ||u1||2 − 2y∗ · u1 = 2(1− y∗ · u1)

and so for every ϵ2/2 ∃C such that if C > C, |y∗ · u1 − 1| < ϵ2/2, and so ||y∗ − u1|| < ϵ.

Hence we also have limC→∞ y∗i = u1
i .

We now show that if i, j are in same orbit of G on Γ, then u1
i = u1

j . To do so, we need
the following lemma:

Lemma 5. ([Biggs, 1993, Ch.15, Lemma 3]) Let λ be a simple eigenvalue of Γ, and let u be
a corresponding eigenvector. If the permutation matrix P represents an automorphism of Γ
then Pu = ±u.

Thus if i, j are in the same orbit of Γ, ui = ±uj. To see this suppose, that P maps node i
to node j then, uj = ±ui. But this must be true for all j such that there is a permutation on
G that maps i to j: i.e. the orbit containing i. Now, recall that from the Perron-Frobenius
Theorem, λ1 is simple, and all its entries have the same sign. Thus for any automorphism
P of Γ, Pu = u. Thus, ui = uj if i and j are in the same orbit under Γ.
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A.2.10 Proof of Proposition 5

Proof. It is clear that, by following a similar logic to the first part of the proof of Proposi-

tion 4, we can show that as C → ∞,
∑

i y
∗ →

∑
i

√
C

||bλm ||
∑

l b̂lu
l
i. In particular, for every ϵ/n

there exists a C such that if C > C, then

|yi −
√
C

||bλm||
∑
l

b̂lu
l
i| <

ϵ

n

⇒ |
∑
i

(
yi −

√
C

||bλm||
∑
l

b̂lu
l
i

)
| <

∑
i

|yi −
√
C

||bλm ||
∑
l

b̂lu
l
i| < ϵ.

It is clear that as C → ∞,
∑

i y
∗ →

∑
i

√
C

||bλm ||
∑

l b̂lu
l
i. Therefore, it remains to prove that∑

i

(∑n
l=m ul

i

)
= 0 on a vertex-transitive graph.

Notice that all nodes in a vertex-transitive graph must necessarily have the same degree,
as symmetries of the graph preserve the number of neighbours. Let k be the degree of
Γ. Furthermore, Γ is vertex-transitive, then Γ/G consists of a single node, with self-degree
k. Thus, using the notation from our proof of Theorem 2, the adjacency matrix H of the
quotient graph is just the scalar k, and Γ/G has a single eigenvalue of k with associated
eigenvector 1.

Now, all regular networks of degree k have largest eigenvalue k with associated eigenvector
k1. Since Γ/G = 1 in a vertex-transitive graph, we have that the only eigenvector of Γ
with form Pu is the largest one. Therefore the eigenvectors associated with the remaining
eigenvalues λ2, . . . , λm must sum to zero on each orbit of G on Γ. Thus, the eigenvectors
um, . . . , un associated with the smallest eigenvalue must sum to zero. Since a vertex-transitive
graph only has a single orbit, we must have that the entries of each of um, . . . , un sum to
zero.

A.2.11 Proof of Proposition 6

Proof. In a similar line to our proof of Proposition 5 we want to show that this condition is
necessary and sufficient for

∑
i∈σ u

n
i = 0 for each orbit σ. The proof of this hinges on the

spectral structure of bipartite graphs. Suppose Γ has bipartite components of size r and s.
Firstly, note that if (u, v) is a length r + s eigenvector of the bi-adjacency matrix of Γ with
corresponding eigenvalue λ, then (u,−v) is an eigenvector of −λ ([Godsil and Royle, 2001,
p.178]). Thus, a bipartite graph has λn = −λ1. Moreover, as a result of the Perron-Frobenius
Theorem, λn is simple and un has no zero entries.

We now prove the sufficient condition (⇒). If ∃Π such that Π(r) = s for some r ∈ R and
s ∈ S then it must be that r and s are in the same orbit σ of G on Γ, which by remark 4
means that |un

s | = |un
r |. However, their signs are different: the smallest eigenvector un has

the form (u,−v) where the entries of u are positive and correspond to the nodes in R and the
entries of v are also positive and correspond to the nodes in S. Thus sgn(un

s ) = −sgn(un
r ).

Thus it must be that
∑

i∈σ u
n
i = 0, which by theorem 2 implies that un sums to zero on

every orbit of G.
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For the necessary condition (⇐), notice that if
∑

i∈σ u
n
i = 0 for every orbit σ, then un

has entries of opposite sign in every orbit (since none of its entries can be zero), which means
that each orbit consists of nodes from both r and s, which implies ∃Π ∈ G such that Π(r) = s
for some r ∈ R, s ∈ S.

To see the final part of the statement, notice that all of r’s neighbours are in S, and all
of s’s neighbours are in R (by virtue of Γ being bipartite). Hence, if r goes into s’s position,
all of s’s neighbours in R must be mapped to neighbours of r in S. Because Γ is connected,
repeating this logic shows that Π(R) = S.

A.3 Additional Proofs

Let v = UTv denote change of basis of the vector v ∈ Rn from the standard basis to the
eigenbasis. The lth entry of v is clearly v · ul.

The proof of lemma 2 follows from eq. (8) in the proof of proposition 7 below.
We let ρ denote the cosine similarity between two non-zero vectors y, z, defined by

ρ(y, z) =
y · z

||y|| ||z||
,

where || · || is the Euclidean norm on Rn.
We may now proceed with our extension of what is Proposition 1 of Galeotti et al. [2020]:

Proposition 7. [Extension of Galeotti et al. [2020]] Suppose that Γ is undirected. Then

1. If β > 0 then as C → ∞, ρ
(
y∗,

√
Cu1

)
→ 1,

2. If β < 0 then as C → ∞, ρ
(
y∗,

√
C

||b̂λm ||

[∑n
l=m b̂lu

l
])

→ 1.

Where b̂λm is the projection of b̂ onto the λm-eigenspace.
43 Part 1 of the above remains

unchanged from the original statement, as the Perron-Frobenius Theorem states that if a
graph is strongly-connected and its adjacency matrix is non-negative then λ1 is equal to the
spectral radius of the graph, and is also simple. We thus only prove part 2, which we exclude
from the body text as it follows a similar line of reasoning to that of the original result and
therefore makes a limited methodological contribution.

Proof of Proposition 7:

Proof. Showing that W ∗

WS → 1 as C → ∞: Assume β < 0. Let x̃ be the optimal interven-
tion when the planner is constrained to allocate their entire budget to a vector in the λm

eigenspace, so that x̃l = 0 ∀l ≤ m−1. It is clear that x̃l is the same ∀l ≥ m. This is because,

43In other words, it is the length (n−m+ 1) vector of the form
∑n

l=m(b̂ · ul)ul.
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similar to the unconstrained problem, we have that

L = w

n∑
l=m

αl (1 + xl)
2 b̂l + µ

(
C −

∑
l

b̂
2

l x
2
l

)
∂L
∂xl

|x∗
l
= 2b̂

2

l (αl(1 + x̃l)− µx̃l) = 0

⇒ x̃l =
wαl

µ− αl

.

But αm = αm+1 . . . = αn, as all these vectors belong to the same eigenspace. We shall simply
refer to αl for l ≥ m as αm, and similarly for x̃m and x∗

m.

Because
∑

x̃2
mb̂

2

l = C , we have that x̃m =
√
C

||b̂λm || . Notice that x̃m ≥ x∗
m as

n∑
l=m

x∗
m

2b̂
2

l = C −
m−1∑
l=1

x∗
l
2b̂

2

l ⇒ x∗
m =

√
C −

∑m−1
l=1 x∗

l
2b̂

2

l

||b̂λm||
≤

√
C

||b̂λm||
. (8)

Now, we have that

W ∗

W s
=

∑m−1
l=1 b̂

2

lαl

(
x∗
l
2 + 2x∗

l

)
+
∑n

l=m b̂
2

lαm

(
x∗
m

2 + 2x∗
m

)
+
∑n

l=1 b̂
2

lαl∑n
l=m b̂

2

lαm (x̃2
m + 2x̃m) +

∑n
l=1 b̂

2

lαl

(9)

≤
∑m−1

l=1 b̂
2

lαl

(
x∗
l
2 + 2x∗

l

)∑n
l=m b̂

2

lαm (x̃2
m + 2x̃m) +

∑n
l=1 b̂

2

lαl

+

∑n
l=m b̂

2

lαm

(
x∗
m

2 + 2x∗
m

)
+
∑n

l=1 b̂
2

lαl∑n
l=m b̂

2

lαm (x̃2
m + 2x̃m) +

∑n
l=1 b̂

2

lαl

(10)

≤
∑m−1

l=1 b̂
2

lαl

(
x∗
l
2 + 2x∗

l

)∑n
l=m b̂

2

lαm (x̃2
m + 2x̃m)

+ 1 (11)

≤
∑m−1

l=1 b̂
2

lαl

(
x∗
l
2 + 2x∗

l

)∑n
l=m b̂

2

lαmx̃2
m

+ 1. (12)

Equation (11) follows from the fact that b̂
2

lαl > 0 ∀l and x̃m ≥ x∗
m ≥ 0. Now, notice that

when β < 0, αm−1 ≥ αl, and x∗
m−1 = αm−1/(µ−αm−1) ≥ αl/(µ−αl) = x∗

l , for all l < m− 1.
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Thus,

m−1∑
l=1

b̂
2

lαl

(
x∗
l
2 + 2x∗

l

)
≤ αm−1

(
x∗
m−1

2 + 2x∗
m−1

)m−1∑
l=1

b̂
2

l

≤ αm−1

((
αm−1

µ− αm−1

)2

+ 2

(
αm−1

µ− αm−1

))
||b||2

≤ αm−1

((
αm−1

αm − αm−1

)2

+ 2

(
αm−1

αm − αm−1

))
||b||2

=
2αm−1(αm − αm−1)

(αm − αm−1)2
||b||2.

Substituting this into the W ∗/W s inequality and using the fact that the budget constraint
must bind for x̃, we have

W ∗

W s
≤

α2
m−1

(αm − αm−1)2
(2αm − 2αm−1)

αmC
||b||2 + 1.

It is clear that as C → ∞, the right-hand side of the inequality converges to 1. Moreover,
1 ≤ W ∗

W s . Thus, applying the Squeeze Theorem yields the desired result.

Showing that ρ
(
y∗,

√
C

||b̂λm ||

[∑n
l=m b̂lu

l
])

→ 1 as C → ∞: We have that

ρ

(
b∗ − b̂,

√
C

||b̂λm||

[
n∑

l=m

b̂lu
l

])
=

(
b∗ − b̂

)
·
(∑n

l=m b̂lu
l
)

||b∗ − b̂|| × ||
∑n

l=m b̂lu
l||

=

(
b∗ − b̂

)
·
(∑n

l=m b̂lu
l
)

√
C × ||bλm||

=

∑n
l=m b̂l

[(
b∗ − b̂

)
· ul
]

√
C × ||bλm||

,

where we have dropped the factor of
√
C/||bλm|| in the first equality because it cancels in

the numerator and the denominator. Note that bλm =
∑n

l=m b̂lu
l in Cartesian co-ordinates.

So it remains to compute
(
b∗ − b̂

)
· ul for each l ∈ {m, . . . , n}. Notice that(

b∗ − b̂
)
· ul =

(
U
(
b∗ − b̂

))
· ul =

(
b∗ − b̂

)
·
(
UTul

)
=
(
b∗ − b̂

)
l
= x∗

l b̂l.
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Moreover, since x∗
l = x∗

m for each l ∈ {m, . . . , n}, we have that

x∗
m =

1

||bλm||

√√√√C −
m−1∑
l=1

x∗
l
2b̂l

2

≥ 1

||bλm ||

√√√√C −
(
x∗
m−1

)2 n∑
l=1

b̂l
2

≥ 1

||bλm ||

√
C −

(
αm−1

αm − αm−1

)2

||b̂||2.

Plugging this back into the expression for cosine similarity yields

ρ

(
b∗ − b̂,

√
C

||b̂λm ||

[
n∑

l=m

b̂lu
l

])
≥
∑n

l=m b̂
2

l

||b̂λm||2

√
1−

(
αm−1

αm − αm−1

)2 ||b̂||2
C

=

√
1−

(
αm−1

αm − αm−1

)2 ||b̂||2
C

.

It is clear that as C → ∞, the right-hand side of the inequality converges to 1. Since 1 ≥
ρ
(
b∗ − b̂,

√
C

||b̂λm ||

[∑n
l=m b̂lu

l
])

, applying the Squeeze Theorem yields the desired result.
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